期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GAN-SUNet网络的电路板红外图像分割方法
1
作者 王力 夏璇 《红外技术》 北大核心 2025年第4期493-500,共8页
红外图像可以直观反映电路板温度及其变化情况。为了解决电路板红外图像上芯片定位困难的问题,本文提出了一种基于GAN-SUNet网络的电路板红外图像分割方法。SUNet网络是在UNet网络的基础上进行改进,通过引入空间金字塔池化模块(SPP)并... 红外图像可以直观反映电路板温度及其变化情况。为了解决电路板红外图像上芯片定位困难的问题,本文提出了一种基于GAN-SUNet网络的电路板红外图像分割方法。SUNet网络是在UNet网络的基础上进行改进,通过引入空间金字塔池化模块(SPP)并修改网络损失函数,减少卷积核数量的方法提高网络检测精度和运行速度。首先,使用生成对抗网络(GAN)对采集到的电路板红外数据进行学习训练并生成仿真红外图像,扩充数据集;然后,使用生成的数据集对SUNet网络进行训练并通过调整模型参数提升其验证精度;最后,使用训练完毕的模型对电路板上的芯片进行识别检测与图像分割实现电路板红外图像芯片定位。实验结果表明:对于电路板红外图像分割,GAN-SUNet网络平均交并比达到93.77%,可以有效减轻人工定位芯片提取数据的压力,为之后芯片温度数据处理提供有力保障。 展开更多
关键词 电路板图像分割 深度学习 红外图像 UNet 生成对抗网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部