期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
固体氧化物电解CO_(2)技术现状与前景 被引量:6
1
作者 赵建军 甄文龙 吕功煊 《燃料化学学报》 EI CAS CSCD 北大核心 2022年第10期1237-1258,共22页
高温固体氧化物电解CO_(2)技术可以同时实现CO_(2)资源化利用与可再生能源电力的转化和储存,是一种高效、绿色、灵活的CO_(2)转化利用技术。该技术可将CO_(2)转化为CO和O_(2),在化工合成和载人深空探测领域极具很好的应用前景,正逐渐成... 高温固体氧化物电解CO_(2)技术可以同时实现CO_(2)资源化利用与可再生能源电力的转化和储存,是一种高效、绿色、灵活的CO_(2)转化利用技术。该技术可将CO_(2)转化为CO和O_(2),在化工合成和载人深空探测领域极具很好的应用前景,正逐渐成为环境与能源领域的研究热点。本综述对高温固体氧化物电解CO_(2)技术的原理、电堆系统、应用领域、效率、经济性以及减排潜力进行了分析与总结,并就目前限制固体氧化物电解CO_(2)技术工业化应用的关键材料、性能衰减和制约因素等问题进行了重点分析,展望了发展趋势和研究重点,以期为相关领域的学者提供参考。 展开更多
关键词 二氧化碳电解 能源储存 氧化碳和氧的制备 固体氧化电解
在线阅读 下载PDF
氧离子传导型固体氧化物电解池燃料电极的研究进展 被引量:2
2
作者 叶灵婷 谢奎 《电化学》 CAS CSCD 北大核心 2020年第2期253-261,共9页
固体氧化物电解池可高效地电解H2O/CO2制备燃料,越来越受到人们的重视.本文对近年来在燃料电极(阴极)材料方面的研究进展进行了全面综述,指出各种阴极材料的优缺点及发展趋势,强调亟待解决的关键科学与技术问题.
关键词 固体氧化电解 燃料电极 水蒸气电解 二氧化碳电解 电解
在线阅读 下载PDF
Modeling and analysis of a novel oxygen production approach with full-spectrum solar energy for the lunar human base
3
作者 Wei Zhu Maobin Hu 《中国科学技术大学学报》 北大核心 2025年第2期2-17,1,I0001,共18页
Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temper... Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temperature carbon dioxide electrolysis,utilizing the full solar spectrum.The optimal oxygen production rates under different solid oxide electrolysis cell inlet temperatures T_(e),ultraviolet(UV)separation wavelengths λ_(2),infrared(IR)separation wavelengths,and photovoltaic cell materials were explored.The results indicate that the inlet temperature of the solid oxide electrolysis cell should be as high as possible so that more carbon dioxide can be converted into carbon monoxide and oxygen.Furthermore,when the ultraviolet separation wavelength is approximately 385 nm,the proportion of solar energy allocated to the photoreaction and electrolysis cell is optimal,and the oxygen production rate is highest at 2.754×10^(-4) mol/s.Moreover,the infrared separation wavelength should be increased as much as possible within the allowable range to increase the amount of solar radiation allocated to the electrolysis cell to improve the rate of oxygen generation.In addition,copper indium gallium selenide(CIGS)has a relatively large separation wavelength,which can result in a high oxygen production rate of 3.560×10^(-4) mol/s.The proposed integrated oxygen production method can provide a feasible solution for supplying oxygen to a lunar human base. 展开更多
关键词 lunar oxygen production full-spectrum solar energy photovoltaic and photon-enhanced thermionic emission electrolysis of carbon dioxide photothermal synergistic reaction solid oxide electrolysis cell
在线阅读 下载PDF
Ambient CO_(2) Capture and Valorization Enabled by Tandem Electrolysis Using Solid-State Electrolyte Reactor
4
作者 Yan-Bo Hua Bao-Xin Ni Kun Jiang 《电化学(中英文)》 北大核心 2025年第6期38-50,共13页
Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-inten... Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community. 展开更多
关键词 ELECTROCATALYSIS ELECTROLYSIS CO_(2)capture CO_(2)reduction Solid-state electrolyte reactor
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部