为了进一步认识上升气流对雷暴云内复杂电荷结构特征的影响,利用加入起放电参数化方案的WRF模式对DC3试验中2012年6月6日一次出现反极性电荷结构的强雷暴过程进行模拟。结果表明,起电区对应强回波区,主要发生在上升气流区中心云水混合...为了进一步认识上升气流对雷暴云内复杂电荷结构特征的影响,利用加入起放电参数化方案的WRF模式对DC3试验中2012年6月6日一次出现反极性电荷结构的强雷暴过程进行模拟。结果表明,起电区对应强回波区,主要发生在上升气流区中心云水混合比大于0.2 g kg^(-1)的冰水混合区,非感应起电机制主导着雷暴云内的起电过程。上升气流区外围区域存在可观的电荷,主要是由气流将起电区域的荷电粒子向后水平输送形成的。同类粒子带电极性在较大范围内变化少,但由于各类粒子的含量和荷电量不同,导致净电荷密度分布呈现较复杂的结构。达到一定强度的上升气流可以破坏电荷区的连续性,导致对流区出现高密度的、正负极性交错分布的、范围更小的电荷区。层云区由于没有上升气流,荷电粒子主要源自上升气流区的水平输送,所以其电荷区分布较连续且范围较大,但电荷密度相对弱。处于不同生命期的单体由于上升气流强度和倾斜程度不同,单体间的水成物粒子分布特征会存在一定差异,使得反转温度和起电率出现较大不同,因此单体合并时上升气流区之间的电荷区更破碎,电荷结构更复杂。展开更多
本研究利用加入起电、放电参数化方案的数值模式(Weather Research and Forecasting Model(Version 3.7.1),WRF3.7.1_ELEC),通过设计五组不同非感应起电及感应起电参数化方案敏感性试验,对发生在青藏高原东北部青海大通地区的一次雷暴...本研究利用加入起电、放电参数化方案的数值模式(Weather Research and Forecasting Model(Version 3.7.1),WRF3.7.1_ELEC),通过设计五组不同非感应起电及感应起电参数化方案敏感性试验,对发生在青藏高原东北部青海大通地区的一次雷暴过程进行模拟研究,对比分析了不同非感应起电机制及感应起电机制对雷暴云电荷结构的影响.结果表明:在雷暴云发展旺盛阶段,Saunders(S91)、Riming Rate(RR)、和Saunders和Peck(SP98)三种非感应起电方案模拟的雷暴云最低层均为负电荷区,而混合方案(Brooks and SP98,BSP)模拟的雷暴云最低层为正电荷区,主电荷区自下而上为“+-+-”排列的四层电荷结构.与甚高频辐射源定位法推算的结果对比,BSP方案模拟的本次高原雷暴云电荷结构更接近实际情况;几种不同非感应起电方案模拟的主电荷区外围与主电荷区电荷结构不同,说明在雷暴发展的不同阶段雷暴云的电荷结构是不同的;几种非感应起电方案模拟的电荷结构不尽相同,主要是由于霰、冰和雪粒子在不同高度所带电荷的极性及电量的大小不同,霰粒子的电荷密度对低层的影响较大,冰粒子和雪粒子的电荷密度对中上层的影响较大;加入感应起电机制后,雷暴云电荷结构分布几乎没有变化,但能使雷暴云发展旺盛阶段低层和中层的正负电荷区电荷密度有所加强.展开更多
文摘为了进一步认识上升气流对雷暴云内复杂电荷结构特征的影响,利用加入起放电参数化方案的WRF模式对DC3试验中2012年6月6日一次出现反极性电荷结构的强雷暴过程进行模拟。结果表明,起电区对应强回波区,主要发生在上升气流区中心云水混合比大于0.2 g kg^(-1)的冰水混合区,非感应起电机制主导着雷暴云内的起电过程。上升气流区外围区域存在可观的电荷,主要是由气流将起电区域的荷电粒子向后水平输送形成的。同类粒子带电极性在较大范围内变化少,但由于各类粒子的含量和荷电量不同,导致净电荷密度分布呈现较复杂的结构。达到一定强度的上升气流可以破坏电荷区的连续性,导致对流区出现高密度的、正负极性交错分布的、范围更小的电荷区。层云区由于没有上升气流,荷电粒子主要源自上升气流区的水平输送,所以其电荷区分布较连续且范围较大,但电荷密度相对弱。处于不同生命期的单体由于上升气流强度和倾斜程度不同,单体间的水成物粒子分布特征会存在一定差异,使得反转温度和起电率出现较大不同,因此单体合并时上升气流区之间的电荷区更破碎,电荷结构更复杂。
文摘本研究利用加入起电、放电参数化方案的数值模式(Weather Research and Forecasting Model(Version 3.7.1),WRF3.7.1_ELEC),通过设计五组不同非感应起电及感应起电参数化方案敏感性试验,对发生在青藏高原东北部青海大通地区的一次雷暴过程进行模拟研究,对比分析了不同非感应起电机制及感应起电机制对雷暴云电荷结构的影响.结果表明:在雷暴云发展旺盛阶段,Saunders(S91)、Riming Rate(RR)、和Saunders和Peck(SP98)三种非感应起电方案模拟的雷暴云最低层均为负电荷区,而混合方案(Brooks and SP98,BSP)模拟的雷暴云最低层为正电荷区,主电荷区自下而上为“+-+-”排列的四层电荷结构.与甚高频辐射源定位法推算的结果对比,BSP方案模拟的本次高原雷暴云电荷结构更接近实际情况;几种不同非感应起电方案模拟的主电荷区外围与主电荷区电荷结构不同,说明在雷暴发展的不同阶段雷暴云的电荷结构是不同的;几种非感应起电方案模拟的电荷结构不尽相同,主要是由于霰、冰和雪粒子在不同高度所带电荷的极性及电量的大小不同,霰粒子的电荷密度对低层的影响较大,冰粒子和雪粒子的电荷密度对中上层的影响较大;加入感应起电机制后,雷暴云电荷结构分布几乎没有变化,但能使雷暴云发展旺盛阶段低层和中层的正负电荷区电荷密度有所加强.