针对复合电能质量扰动检测算法实时性差、时频分辨率低的问题,提出了一种基于改进自适应S变换(improved adaptive S transform, IAST)的电能质量扰动实时检测方法。构建全局自适应高斯窗作为IAST的核函数,可随检测频率变化自适应调整窗...针对复合电能质量扰动检测算法实时性差、时频分辨率低的问题,提出了一种基于改进自适应S变换(improved adaptive S transform, IAST)的电能质量扰动实时检测方法。构建全局自适应高斯窗作为IAST的核函数,可随检测频率变化自适应调整窗函数有效窗长及频谱,避免为提高时频分辨率频繁切换窗口参数,降低算法复杂度。以增强信号能量集中度为参数调优目标选取窗口参数,确保对各类扰动的精确时频定位。采用自动阈值法确定实际扰动信号的主频点,并对主频点进行时频变换,进一步提高算法执行效率。仿真和实测结果表明,相比于现有复合电能质量扰动检测算法,该检测方法实时性好、时频分辨能力强、计算复杂度低,适用于复杂电能质量扰动实时准确检测。展开更多
随着光伏、风电等新能源占比不断增加,以及大量新型电力电子设备等非线性负载接入电网,电力系统中的电能质量扰动事件(power quality disturbances,PQDs)频发。为了提高复合电能质量扰动识别准确率,该文提出一种多尺度卷积融合时间序列T...随着光伏、风电等新能源占比不断增加,以及大量新型电力电子设备等非线性负载接入电网,电力系统中的电能质量扰动事件(power quality disturbances,PQDs)频发。为了提高复合电能质量扰动识别准确率,该文提出一种多尺度卷积融合时间序列Transformer模型(multi-scale convolution fusion time series transformer,MCF-TST)。首先,使用3个不同尺度的卷积核对输入的原始电能质量扰动一维时序信号进行多通道卷积操作,初步提取扰动信号在不同时间尺度的多维特征;然后经过时间序列Transformer中的多头注意力机制提取扰动信号更加深层次的暂态局部特征和周期性全局特征;最后通过全连接层和softmax分类器输出识别结果。仿真和硬件实验结果表明,该文所提模型能够在保留信号的原始一维时序特征的同时提取更高维度的深层特征,对多种复合电能质量扰动识别准确率高,具有良好的抗噪能力和泛化性能。展开更多
文摘针对复合电能质量扰动检测算法实时性差、时频分辨率低的问题,提出了一种基于改进自适应S变换(improved adaptive S transform, IAST)的电能质量扰动实时检测方法。构建全局自适应高斯窗作为IAST的核函数,可随检测频率变化自适应调整窗函数有效窗长及频谱,避免为提高时频分辨率频繁切换窗口参数,降低算法复杂度。以增强信号能量集中度为参数调优目标选取窗口参数,确保对各类扰动的精确时频定位。采用自动阈值法确定实际扰动信号的主频点,并对主频点进行时频变换,进一步提高算法执行效率。仿真和实测结果表明,相比于现有复合电能质量扰动检测算法,该检测方法实时性好、时频分辨能力强、计算复杂度低,适用于复杂电能质量扰动实时准确检测。
文摘随着光伏、风电等新能源占比不断增加,以及大量新型电力电子设备等非线性负载接入电网,电力系统中的电能质量扰动事件(power quality disturbances,PQDs)频发。为了提高复合电能质量扰动识别准确率,该文提出一种多尺度卷积融合时间序列Transformer模型(multi-scale convolution fusion time series transformer,MCF-TST)。首先,使用3个不同尺度的卷积核对输入的原始电能质量扰动一维时序信号进行多通道卷积操作,初步提取扰动信号在不同时间尺度的多维特征;然后经过时间序列Transformer中的多头注意力机制提取扰动信号更加深层次的暂态局部特征和周期性全局特征;最后通过全连接层和softmax分类器输出识别结果。仿真和硬件实验结果表明,该文所提模型能够在保留信号的原始一维时序特征的同时提取更高维度的深层特征,对多种复合电能质量扰动识别准确率高,具有良好的抗噪能力和泛化性能。