由于拥有―C(O)S―和―NCO基团,FC(O)SNCO的分子和电子结构是非常有趣的.利用FC(O)SCl和Ag NCO制备了FC(O)SNCO,并利用He I光电子能谱(PES)、光电离质谱(PIMS)以及理论计算研究了其分子和电子结构.通过将实验、理论计算以及自然键轨道(N...由于拥有―C(O)S―和―NCO基团,FC(O)SNCO的分子和电子结构是非常有趣的.利用FC(O)SCl和Ag NCO制备了FC(O)SNCO,并利用He I光电子能谱(PES)、光电离质谱(PIMS)以及理论计算研究了其分子和电子结构.通过将实验、理论计算以及自然键轨道(NBO)分析结合起来,获得了FC(O)SNCO的最稳定分子构型.利用外壳层格林函数(OVGF)方法以及与相似化合物的比较,对其光电子能谱进行了指认.理论计算表明,对于中性分子最稳定的构型为syn-syn非平面构型,而电离后的离子最稳定构型为syn-syn平面构型.实验结果表明,第一电离能来自于S的孤对电子轨道,为10.33 e V.第二至第六电离能分别为12.03、13.23、13.77、14.78、15.99 e V,并对这些电离能进行了指认.在光电离质谱中产生了六个质谱峰,分别为SN+、FC(O)+、SNCO+、FC(O)SN+、C(O)SNCO+、FC(O)SNCO+,其中FC(O)SNCO+的峰是最强峰.结合HeI光电子能谱和理论计算,对PIMS进行了分析,并研究了可能的电离和解离过程并对其进行了讨论.展开更多
In this paper,subnanosecond-pulse and one-nanosecond-pulse generators are used to study the breakdowns in highly overvolted gaps in atmospheric pressure air.With different cathodes,we measured the applied voltage and ...In this paper,subnanosecond-pulse and one-nanosecond-pulse generators are used to study the breakdowns in highly overvolted gaps in atmospheric pressure air.With different cathodes,we measured the applied voltage and discharge current to investigate the dynamic characteristics in the subnanosecond breakdown during the generation of a supershort avalanche electron beam.Especially,characteristics of dynamic displacement current are presented in the current paper,which is detected between the ionization wave front and a plane anode.It is shown that during a subnanosecond voltage rise time,the amplitude of the dynamic displacement current can be higher than 4 kA.It is demonstrated that the breakdown in the air gap is assisted by ionization processes between the ionization wave front and a plane anode.展开更多
An Nd: YAG pulsed laser (145 mJ) was used to ablate aluminum target and Ar was used as protecting gas. Time-and space-resolved spectra of the plasmas under pressure 100 Pa, 1 kPa, 10 kPa and 100 kPa were acquired with...An Nd: YAG pulsed laser (145 mJ) was used to ablate aluminum target and Ar was used as protecting gas. Time-and space-resolved spectra of the plasmas under pressure 100 Pa, 1 kPa, 10 kPa and 100 kPa were acquired with time- and space-resolved technique. The characteristics of the plasma radiating under each pressure were briefly described, and the laws of Ar characteristical radiaton were analyzed in detail. Based on the profile of Ar characteristical radiation under these pressure, the relation between protecting gas pressure and its ionization was briefly discussed, and explained with quantum theory. Farther more, the mechanism of ambient gas ionization was investigated. As the result, it was suggested that the main mechanism inducing protecting gas to ionize should be the absorption of the plasma continuum radiation by the gas.展开更多
基金supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB05010400)National NaturalScience Foundation of China(41105085,21073051)Natural Science Foundation of Hebei Province,China(B2010000368)~~
文摘由于拥有―C(O)S―和―NCO基团,FC(O)SNCO的分子和电子结构是非常有趣的.利用FC(O)SCl和Ag NCO制备了FC(O)SNCO,并利用He I光电子能谱(PES)、光电离质谱(PIMS)以及理论计算研究了其分子和电子结构.通过将实验、理论计算以及自然键轨道(NBO)分析结合起来,获得了FC(O)SNCO的最稳定分子构型.利用外壳层格林函数(OVGF)方法以及与相似化合物的比较,对其光电子能谱进行了指认.理论计算表明,对于中性分子最稳定的构型为syn-syn非平面构型,而电离后的离子最稳定构型为syn-syn平面构型.实验结果表明,第一电离能来自于S的孤对电子轨道,为10.33 e V.第二至第六电离能分别为12.03、13.23、13.77、14.78、15.99 e V,并对这些电离能进行了指认.在光电离质谱中产生了六个质谱峰,分别为SN+、FC(O)+、SNCO+、FC(O)SN+、C(O)SNCO+、FC(O)SNCO+,其中FC(O)SNCO+的峰是最强峰.结合HeI光电子能谱和理论计算,对PIMS进行了分析,并研究了可能的电离和解离过程并对其进行了讨论.
基金Project supported by Russian Foundation for Basic Research (12-08-91150-FOEH_a and 12-08-00105-a), National Natural Science Foundation of China (51222701, 51207154, 51211120183), and the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (2012T1G0021).
文摘In this paper,subnanosecond-pulse and one-nanosecond-pulse generators are used to study the breakdowns in highly overvolted gaps in atmospheric pressure air.With different cathodes,we measured the applied voltage and discharge current to investigate the dynamic characteristics in the subnanosecond breakdown during the generation of a supershort avalanche electron beam.Especially,characteristics of dynamic displacement current are presented in the current paper,which is detected between the ionization wave front and a plane anode.It is shown that during a subnanosecond voltage rise time,the amplitude of the dynamic displacement current can be higher than 4 kA.It is demonstrated that the breakdown in the air gap is assisted by ionization processes between the ionization wave front and a plane anode.
文摘An Nd: YAG pulsed laser (145 mJ) was used to ablate aluminum target and Ar was used as protecting gas. Time-and space-resolved spectra of the plasmas under pressure 100 Pa, 1 kPa, 10 kPa and 100 kPa were acquired with time- and space-resolved technique. The characteristics of the plasma radiating under each pressure were briefly described, and the laws of Ar characteristical radiaton were analyzed in detail. Based on the profile of Ar characteristical radiation under these pressure, the relation between protecting gas pressure and its ionization was briefly discussed, and explained with quantum theory. Farther more, the mechanism of ambient gas ionization was investigated. As the result, it was suggested that the main mechanism inducing protecting gas to ionize should be the absorption of the plasma continuum radiation by the gas.