为提高板结构-声场耦合分析的计算精度,将有限元-最小二乘点插值法(Finite Element-Least Square Point Interpolation Method,FE-LSPIM)推广到板结构-声场耦合问题的结构域分析中,提出了板结构-声场耦合问题分析的FE-LSPIM/FEM(Finite ...为提高板结构-声场耦合分析的计算精度,将有限元-最小二乘点插值法(Finite Element-Least Square Point Interpolation Method,FE-LSPIM)推广到板结构-声场耦合问题的结构域分析中,提出了板结构-声场耦合问题分析的FE-LSPIM/FEM(Finite Element-Least Square Point Interpolation Method/Finite Element Method),推导了FELSPIM/FEM分析板结构-声场耦合问题的计算公式。此方法在结构域中应用四边形单元形函数和最小二乘点插值法进行局部逼近,继承了有限元法的单元兼容性和最小二乘插值法的二次多项式完备性,提高了结构域的计算精度;在流体域中应用标准有限元模型进行分析。以一六面体声场-结构耦合模型为研究对象进行分析,结果表明,与板结构-声场耦合问题分析的FEM/FEM和光滑有限元/有限元(Smoothed Finite Element Method/Finite Element Method,SFEM/FEM)相比,FE-LSPIM/FEM在分析板结构-声场耦合问题时具有更高的精度。展开更多
文摘为提高板结构-声场耦合分析的计算精度,将有限元-最小二乘点插值法(Finite Element-Least Square Point Interpolation Method,FE-LSPIM)推广到板结构-声场耦合问题的结构域分析中,提出了板结构-声场耦合问题分析的FE-LSPIM/FEM(Finite Element-Least Square Point Interpolation Method/Finite Element Method),推导了FELSPIM/FEM分析板结构-声场耦合问题的计算公式。此方法在结构域中应用四边形单元形函数和最小二乘点插值法进行局部逼近,继承了有限元法的单元兼容性和最小二乘插值法的二次多项式完备性,提高了结构域的计算精度;在流体域中应用标准有限元模型进行分析。以一六面体声场-结构耦合模型为研究对象进行分析,结果表明,与板结构-声场耦合问题分析的FEM/FEM和光滑有限元/有限元(Smoothed Finite Element Method/Finite Element Method,SFEM/FEM)相比,FE-LSPIM/FEM在分析板结构-声场耦合问题时具有更高的精度。