辐射源定位结果的有效性判定能够排除噪声定位结果干扰,保留真实有效的辐射源定位点,进而获取一个清晰连续的闪电成像图.基于电磁时间反转(electromagnetic time reversal,EMTR)的雷电甚高频辐射源定位方法具有较高的定位精度,但其定位...辐射源定位结果的有效性判定能够排除噪声定位结果干扰,保留真实有效的辐射源定位点,进而获取一个清晰连续的闪电成像图.基于电磁时间反转(electromagnetic time reversal,EMTR)的雷电甚高频辐射源定位方法具有较高的定位精度,但其定位结果有效性判定方法依靠主观设定的阈值,无法准确区分弱辐射源和噪声定位结果;其次,该方法定位速度较慢,时效性较差.为了改善这些问题,本文提出了一种基于神经网络辅助决策的定位方法,构建了一个双通道二维卷积神经网络分类模型.首先对滑动窗口的时域信号进行离散傅里叶变换,将其频点幅值及相位信息输入模型进行分类预测,判断其是否为辐射源;而后仅保留辐射源滑窗数据进行定位计算,减少了滑窗运算量;最后通过密度聚类算法对定位结果进行筛选并得到最终定位结果.模型在实测的人工引雷数据上的分类精度达到了99.73%.使用梯度可视化热力图对模型所学习到的特征以及分类依据进行物理涵义分析,增强了模型的可解释性以及合理性.相较于现有的EMTR方法,本文提出的方法不仅定位速度提高了21倍,同时模型具有较好的迁移泛化能力,对于未曾学习过的人工触发闪电以及自然闪电数据均具有较好的识别能力,在这些数据上的辐射源定位数量增加了55.71%,在排除噪声干扰的同时,获得了更为精细的通道结构图,并保留了更多的雷电发展分支结构.展开更多
为了精确识别直流配电网故障线路,缩小失电范围,并降低支节点附近故障选线盲区,提出了基于变相位系数–电磁时间反转(variable phase coefficient-electromagnetic time reversal,VPC-EMTR)的多端故障选线方法。该方法根据配电网拓扑和...为了精确识别直流配电网故障线路,缩小失电范围,并降低支节点附近故障选线盲区,提出了基于变相位系数–电磁时间反转(variable phase coefficient-electromagnetic time reversal,VPC-EMTR)的多端故障选线方法。该方法根据配电网拓扑和线路参数建立了无损镜像线路网络,利用测量点处的时间反转后的1模电流在无损镜像网络中建立电流源,并计算该线路网络中每一点处的假想故障的故障电流有效值,最大有效值所处线路即为故障线路。该方法设置各镜像支路的相位系数与其长度呈高斯分布函数关系,使得支节点附近的故障测距结果偏移至线路中间处。同时,该方法利用最少测量点二次计算故障选线结果,减少了多余测量点对选线结果的影响,保证了故障选线结果的可靠性。在理论上对该方法进行了证明,并在PSCAD中建立了“手拉手”型多端直流配电网络来验证该方法的有效性,仿真结果表明:基于VPC-EMTR的多端故障选线法的选线结果准确,能够减少支节点附近选线的盲区。展开更多
根据基于电磁时间反转(electromagnetic time reversal,EMTR)的线路故障测距理论部分,可得到3种不同的故障测距方法,分别为时域电流法、频域前行电流法和频域前行电流补偿法。时域电流法仅利用线路两侧的故障电流分解量,在时域中求无损...根据基于电磁时间反转(electromagnetic time reversal,EMTR)的线路故障测距理论部分,可得到3种不同的故障测距方法,分别为时域电流法、频域前行电流法和频域前行电流补偿法。时域电流法仅利用线路两侧的故障电流分解量,在时域中求无损镜像线路中的假设故障电流有效值最大处;频域前行电流法利用单一参数线路两侧的频域暂态前行电流的共轭量,在有损镜像线路中求得假设故障电流有效值最小处;频域前行电流补偿法利用线路两侧频域暂态前行电流的共轭量,在无损镜像线路中求得假设故障电流有效值最大处,再利用故障距离偏差数据库对故障距离进行补偿。建立了双端交流输电系统(包括单一参数线路和混合参数线路),对3种方法进行了大量仿真验证。展开更多
文摘由于串联补偿电容的存在和金属氧化物可变电阻(metal oxide varistor,MOV)保护装置的非线性,使得具有串联电容补偿装置的输电线路的故障测距变得困难。该文在考虑串补电容对故障信号的影响,以及非线性保护装置的启动时间后,将电磁时间反转(electromagnetic time reversal,EMTR)理论应用于串补线路故障测距,提出一种新的串补线路故障测距方法。首先将线路两端故障电流解耦后进行小波分解,提取故障电流暂态信号,再将该暂态信号进行时间反转,作为电流源连接在构造的镜像线路的两端;然后针对各个假设的故障点,计算其电流有效值,由于真实的故障点具有最大的接地电流,所以具有最大接地电流的点即为故障点。仿真结果验证了提出的故障测距方法的有效性和正确性,并且该方法不受故障类型、过渡电阻及合闸角影响。
文摘辐射源定位结果的有效性判定能够排除噪声定位结果干扰,保留真实有效的辐射源定位点,进而获取一个清晰连续的闪电成像图.基于电磁时间反转(electromagnetic time reversal,EMTR)的雷电甚高频辐射源定位方法具有较高的定位精度,但其定位结果有效性判定方法依靠主观设定的阈值,无法准确区分弱辐射源和噪声定位结果;其次,该方法定位速度较慢,时效性较差.为了改善这些问题,本文提出了一种基于神经网络辅助决策的定位方法,构建了一个双通道二维卷积神经网络分类模型.首先对滑动窗口的时域信号进行离散傅里叶变换,将其频点幅值及相位信息输入模型进行分类预测,判断其是否为辐射源;而后仅保留辐射源滑窗数据进行定位计算,减少了滑窗运算量;最后通过密度聚类算法对定位结果进行筛选并得到最终定位结果.模型在实测的人工引雷数据上的分类精度达到了99.73%.使用梯度可视化热力图对模型所学习到的特征以及分类依据进行物理涵义分析,增强了模型的可解释性以及合理性.相较于现有的EMTR方法,本文提出的方法不仅定位速度提高了21倍,同时模型具有较好的迁移泛化能力,对于未曾学习过的人工触发闪电以及自然闪电数据均具有较好的识别能力,在这些数据上的辐射源定位数量增加了55.71%,在排除噪声干扰的同时,获得了更为精细的通道结构图,并保留了更多的雷电发展分支结构.
文摘为了精确识别直流配电网故障线路,缩小失电范围,并降低支节点附近故障选线盲区,提出了基于变相位系数–电磁时间反转(variable phase coefficient-electromagnetic time reversal,VPC-EMTR)的多端故障选线方法。该方法根据配电网拓扑和线路参数建立了无损镜像线路网络,利用测量点处的时间反转后的1模电流在无损镜像网络中建立电流源,并计算该线路网络中每一点处的假想故障的故障电流有效值,最大有效值所处线路即为故障线路。该方法设置各镜像支路的相位系数与其长度呈高斯分布函数关系,使得支节点附近的故障测距结果偏移至线路中间处。同时,该方法利用最少测量点二次计算故障选线结果,减少了多余测量点对选线结果的影响,保证了故障选线结果的可靠性。在理论上对该方法进行了证明,并在PSCAD中建立了“手拉手”型多端直流配电网络来验证该方法的有效性,仿真结果表明:基于VPC-EMTR的多端故障选线法的选线结果准确,能够减少支节点附近选线的盲区。
文摘根据基于电磁时间反转(electromagnetic time reversal,EMTR)的线路故障测距理论部分,可得到3种不同的故障测距方法,分别为时域电流法、频域前行电流法和频域前行电流补偿法。时域电流法仅利用线路两侧的故障电流分解量,在时域中求无损镜像线路中的假设故障电流有效值最大处;频域前行电流法利用单一参数线路两侧的频域暂态前行电流的共轭量,在有损镜像线路中求得假设故障电流有效值最小处;频域前行电流补偿法利用线路两侧频域暂态前行电流的共轭量,在无损镜像线路中求得假设故障电流有效值最大处,再利用故障距离偏差数据库对故障距离进行补偿。建立了双端交流输电系统(包括单一参数线路和混合参数线路),对3种方法进行了大量仿真验证。