通过设计正交实验的方式研究了复掺铁氧体、石墨和碳纤维水泥基复合材料材料的电磁屏蔽效能。结果表明:在30~1500 MHz频率范围内,影响电磁屏蔽效能的主次因素分别为碳纤维、铁氧体和石墨。铁氧体、石墨和碳纤维最佳掺量为占水泥质量比3...通过设计正交实验的方式研究了复掺铁氧体、石墨和碳纤维水泥基复合材料材料的电磁屏蔽效能。结果表明:在30~1500 MHz频率范围内,影响电磁屏蔽效能的主次因素分别为碳纤维、铁氧体和石墨。铁氧体、石墨和碳纤维最佳掺量为占水泥质量比34. 4%、25%和1. 9%,其平均电磁屏蔽效能达到33. 51 d B,且电磁屏蔽效能随着试样厚度的增加而线性增大。在200~1500 MHz范围内,掺入铁氧体和碳纤维的平均屏蔽效能在37 d B左右,而掺入石墨和碳纤维的平均屏蔽效能在31 d B左右,复掺铁氧体和碳纤维试样的电磁屏蔽效能要比复掺石墨和碳纤维的屏蔽效果好。展开更多
电磁波技术的广泛应用导致电磁干扰与污染日益严重,采取电磁屏蔽措施能够有效地防范这些危害。实验采用不同的方法分散镍纤维屏蔽介质,然后掺入到水泥材料中制得水泥基复合屏蔽材料,研究了屏蔽介质的分散方式、掺量、试样厚度对屏蔽性...电磁波技术的广泛应用导致电磁干扰与污染日益严重,采取电磁屏蔽措施能够有效地防范这些危害。实验采用不同的方法分散镍纤维屏蔽介质,然后掺入到水泥材料中制得水泥基复合屏蔽材料,研究了屏蔽介质的分散方式、掺量、试样厚度对屏蔽性能的影响;利用四探针测试仪、电子探针等手段表征了复合材料的电导率和屏蔽介质的分散均匀性。结果表明,镍纤维屏蔽介质的分散方式对屏蔽性能有较大的影响,其在水泥基材料中有一个最佳掺量值;当采用超声波分散的掺量φ镍纤维为5%、试样厚度为6 mm时,水泥基复合材料的电导率为2. 41×10^(-3)S/cm,在100 k Hz~1. 5 GHz频率范围内的平均屏蔽效能值约40 d B,其最小屏蔽效能值为36. 23 d B,最大达45. 74 dB。展开更多
碳化硅纳米线具有优异的电磁吸收性能,三维网络结构可以更好地使电磁波在空间内被多次反射和吸收。通过抽滤的方法制备得到体积分数20%交错排列的碳化硅纳米线网络预制体。然后采用化学气相渗透工艺制备热解炭界面和碳化硅基体,并通过...碳化硅纳米线具有优异的电磁吸收性能,三维网络结构可以更好地使电磁波在空间内被多次反射和吸收。通过抽滤的方法制备得到体积分数20%交错排列的碳化硅纳米线网络预制体。然后采用化学气相渗透工艺制备热解炭界面和碳化硅基体,并通过化学气相渗透和前驱体浸渍热解工艺得到致密的SiCNWs/SiC陶瓷基复合材料。甲烷和三氯甲基硅烷分别是热解炭和碳化硅的前驱体,随着热解碳质量分数从21.3%增加到29.5%,多孔SiCNWs预制体电磁屏蔽效率均值在8~12GHz(X)波段从9.2d B增加到64.1d B。质量增重13%的热解碳界面修饰的SiCNWs/SiC陶瓷基复合材料在X波段平均电磁屏蔽效率达到37.8 d B电磁屏蔽性能。结果显示,SiCNWs/SiC陶瓷基复合材料在新一代军事电磁屏蔽材料中具有潜在应用前景。展开更多
文摘通过设计正交实验的方式研究了复掺铁氧体、石墨和碳纤维水泥基复合材料材料的电磁屏蔽效能。结果表明:在30~1500 MHz频率范围内,影响电磁屏蔽效能的主次因素分别为碳纤维、铁氧体和石墨。铁氧体、石墨和碳纤维最佳掺量为占水泥质量比34. 4%、25%和1. 9%,其平均电磁屏蔽效能达到33. 51 d B,且电磁屏蔽效能随着试样厚度的增加而线性增大。在200~1500 MHz范围内,掺入铁氧体和碳纤维的平均屏蔽效能在37 d B左右,而掺入石墨和碳纤维的平均屏蔽效能在31 d B左右,复掺铁氧体和碳纤维试样的电磁屏蔽效能要比复掺石墨和碳纤维的屏蔽效果好。
文摘电磁波技术的广泛应用导致电磁干扰与污染日益严重,采取电磁屏蔽措施能够有效地防范这些危害。实验采用不同的方法分散镍纤维屏蔽介质,然后掺入到水泥材料中制得水泥基复合屏蔽材料,研究了屏蔽介质的分散方式、掺量、试样厚度对屏蔽性能的影响;利用四探针测试仪、电子探针等手段表征了复合材料的电导率和屏蔽介质的分散均匀性。结果表明,镍纤维屏蔽介质的分散方式对屏蔽性能有较大的影响,其在水泥基材料中有一个最佳掺量值;当采用超声波分散的掺量φ镍纤维为5%、试样厚度为6 mm时,水泥基复合材料的电导率为2. 41×10^(-3)S/cm,在100 k Hz~1. 5 GHz频率范围内的平均屏蔽效能值约40 d B,其最小屏蔽效能值为36. 23 d B,最大达45. 74 dB。
基金National Natural Science Foundation of China(51772310)Chinese Academy of Sciences Key Research Program of Frontier Sciences(QYZDY-SSWJSC031)Innovation Academy for Light-duty Gas Turbine,Chinese Academy of Sciences(CXYJJ20-MS-02)。
文摘碳化硅纳米线具有优异的电磁吸收性能,三维网络结构可以更好地使电磁波在空间内被多次反射和吸收。通过抽滤的方法制备得到体积分数20%交错排列的碳化硅纳米线网络预制体。然后采用化学气相渗透工艺制备热解炭界面和碳化硅基体,并通过化学气相渗透和前驱体浸渍热解工艺得到致密的SiCNWs/SiC陶瓷基复合材料。甲烷和三氯甲基硅烷分别是热解炭和碳化硅的前驱体,随着热解碳质量分数从21.3%增加到29.5%,多孔SiCNWs预制体电磁屏蔽效率均值在8~12GHz(X)波段从9.2d B增加到64.1d B。质量增重13%的热解碳界面修饰的SiCNWs/SiC陶瓷基复合材料在X波段平均电磁屏蔽效率达到37.8 d B电磁屏蔽性能。结果显示,SiCNWs/SiC陶瓷基复合材料在新一代军事电磁屏蔽材料中具有潜在应用前景。