针对储能系统中电池组充放电过程中能量利用率以及系统运行安全性较低的问题,提出考虑SOC一致性的电池组双层动态均衡方法。首先,采用耦合电感与Flyback变换器搭建均衡系统双层架构,建立电池组端电压、均衡电流及占空比间的关联特性。...针对储能系统中电池组充放电过程中能量利用率以及系统运行安全性较低的问题,提出考虑SOC一致性的电池组双层动态均衡方法。首先,采用耦合电感与Flyback变换器搭建均衡系统双层架构,建立电池组端电压、均衡电流及占空比间的关联特性。为提高电池组的供能可靠性,系统引入故障切除功能,通过改变开关阵列导通状态实现故障电池组的快速切除;其次,考虑增补电池组剩余容量较大问题,利用传统最值法改进的双层极值法,以荷电状态(stage of charge,SOC)作为均衡目标变量,对增补电池组进行快速放电均衡;最后,设计充放电及静置均衡实验,对比传统最值法,分析常态及故障切除后电路的均衡速度与均衡效率。结果表明,提出的双层均衡方法可以将均衡速度提升约10%,且故障切除后电路的均衡效率最高可达95%以上。展开更多
电池的荷电状态(state of charge,SOC)和健康状态(state of health,SOH)作为电动汽车动力电池的重要指标,准确估计SOC与SOH对确保电动汽车运行高效、安全以及稳定有着重要意义。由于SOC与SOH之间有着耦合关系,单独估计SOC或SOH都会造成...电池的荷电状态(state of charge,SOC)和健康状态(state of health,SOH)作为电动汽车动力电池的重要指标,准确估计SOC与SOH对确保电动汽车运行高效、安全以及稳定有着重要意义。由于SOC与SOH之间有着耦合关系,单独估计SOC或SOH都会造成估计精度的影响,因此联合估计SOC与SOH是当前迫切需要解决的问题。联合估计策略主要分为基于模型方法、数据驱动方法以及混合方法,并对每类方法进行了分析与总结,最后阐述了SOC与SOH联合估计的发展趋势。展开更多
采用有限元法分别对锂离子电池的荷电状态(state of charge,SOC)、内部缺陷(气泡缺陷、析锂缺陷和浸润不完全缺陷)与超声透射特性之间的影响规律进行了仿真分析。首先,利用Voronoi多边形建立了锂离子电池内部的多层多孔结构;其次,在仿...采用有限元法分别对锂离子电池的荷电状态(state of charge,SOC)、内部缺陷(气泡缺陷、析锂缺陷和浸润不完全缺陷)与超声透射特性之间的影响规律进行了仿真分析。首先,利用Voronoi多边形建立了锂离子电池内部的多层多孔结构;其次,在仿真过程中,通过改变正负极材料的力学参数(杨氏模量和密度)实现了锂离子电池不同荷电状态下超声透射特性的提取。仿真结果表明,随着荷电状态的增加,快纵波的声强幅值和慢纵波的声强幅值均呈现线性增加的规律,慢纵波的渡越时间呈现线性减小的规律。随后,对锂离子电池内部不同缺陷形式进行仿真分析。通过对比正常电池和缺陷电池的声透射信息可以发现:当锂离子电池底部存在气泡缺陷时,透射信号的声强幅值显著衰减,且随着气泡厚度的增加,声强幅值的衰减也在增加;此外,随着气泡位置的改变,透射信号的声强幅值也呈现规律性变化;当锂离子电池内部存在析锂缺陷时,透射信号的声强幅值和渡越时间均随着析锂厚度的增加而逐渐减小;当锂离子电池内部存在浸润不完全缺陷时,仿真模型将退化为单相多孔介质,频域中也只存在一个频率成分,且声强幅值存在衰减。研究内容解决了用有限元法对锂离子电池荷电状态、内部缺陷进行模拟处理的问题,且慢纵波波速的仿真结果与理论结果吻合良好。展开更多
在车辆行驶过程中,荷电状态(State of Charge,SOC)估算高度依赖电流测量,但电流传感器故障会导致数据缺失,进而降低SOC估算精度,为此,亟需一种能够在电流数据异常或缺失情况下仍可准确估算SOC的方法。针对此问题,提出了一种基于卷积神...在车辆行驶过程中,荷电状态(State of Charge,SOC)估算高度依赖电流测量,但电流传感器故障会导致数据缺失,进而降低SOC估算精度,为此,亟需一种能够在电流数据异常或缺失情况下仍可准确估算SOC的方法。针对此问题,提出了一种基于卷积神经网络(Convolutional Neural Networks,CNN)-长短期记忆(Long Short-Term Memory,LSTM)网络-科尔莫戈洛夫-阿诺德网络(Kolmogorov-Arnold Networks,KAN)的数据驱动方法,该方法不依赖电流数据,可以作为电流传感器失效时的替代SOC估算方案。CNN-LSTM网络-KAN模型综合利用了CNN的特征提取能力、LSTM网络的时间序列建模优势和KAN的非线性分解能力,从而实现对车辆行驶过程中SOC的估算。最终CNN-LSTM网络-KAN模型通过实车行驶数据集得到了效果验证,结果表明,所提方法对SOC的预测值与SOC真实值之间的平均绝对误差(Mean Absolute Error,MAE)为0.381,均方根误差(Root Mean Square Error,RMSE)为0.467,决定系数R2为0.980。说明所提方法在电流传感器失效情况下,仍然能够有效估算车辆的SOC。展开更多
电动汽车(electric vehicle,EV)既是交通网的车流负荷,又是电网的用电负荷,它的出行以及充电行为会对交通网和电网的运行规律造成影响。针对电动汽车单体进行随机抽样的传统预测方法,未能从电动汽车群体的移动运行状态考虑,提出了一种...电动汽车(electric vehicle,EV)既是交通网的车流负荷,又是电网的用电负荷,它的出行以及充电行为会对交通网和电网的运行规律造成影响。针对电动汽车单体进行随机抽样的传统预测方法,未能从电动汽车群体的移动运行状态考虑,提出了一种基于交通均衡理论的电动汽车充电负荷预测方法。首先在时间和空间两个维度上,分别对电动汽车和路网进行建模,采用A*算法构建电动汽车出行原目的地(origin-destination,OD)对的有效的路径集。计及用户有限理性,引入分时电价制定了一种计及交通流量约束的充电站电价,并结合随机效用理论与分时电价,建立了半动态交通均衡模型来求解交通流的分配。随后基于组合荷电状态(calculation method of combined state of charge,CSOC)的概率数值计算方法对电动汽车充电负荷进行求解。最后,基于上海市新能源汽车数据,分别以改进的13节点路网和上海市某区域路网分析验证了所提充电负荷预测方法的有效性,结果表明所提方法可以降低充电成本,缓解充电站充电压力。展开更多
利用扩展卡尔曼滤波(extend Kalman filter,EKF)算法估计锂电池的荷电状态(state of charge,SOC)时,经常会遇到SOC初值设定不准确和非高斯观测噪声干扰的问题,直接造成估计精度不高。为解决上述问题,该文建立锂电池的一阶戴维南等效电...利用扩展卡尔曼滤波(extend Kalman filter,EKF)算法估计锂电池的荷电状态(state of charge,SOC)时,经常会遇到SOC初值设定不准确和非高斯观测噪声干扰的问题,直接造成估计精度不高。为解决上述问题,该文建立锂电池的一阶戴维南等效电路模型,提出最大熵准则下,分阶段变换观测噪声协方差的扩展卡尔曼滤波算法估计锂电池SOC。该算法在SOC起始估计阶段利用小数量级观测噪声协方差提升收敛速度,并以观测残差一阶低通滤波值的第一次正负状态转换作为收敛判据。当判断估计值已快速收敛至容许误差范围内时,算法自适应地切换为大数量级观测噪声协方差来保证后续估计波形的平滑度,同时引入最大熵准则以迭代递推形式实时修正观测噪声的统计特性,用来减小非高斯观测噪声对估计精度的影响。结果表明,所提方法估计SOC的综合性能优异、鲁棒性强,具有很好的工程应用价值。展开更多
文摘针对储能系统中电池组充放电过程中能量利用率以及系统运行安全性较低的问题,提出考虑SOC一致性的电池组双层动态均衡方法。首先,采用耦合电感与Flyback变换器搭建均衡系统双层架构,建立电池组端电压、均衡电流及占空比间的关联特性。为提高电池组的供能可靠性,系统引入故障切除功能,通过改变开关阵列导通状态实现故障电池组的快速切除;其次,考虑增补电池组剩余容量较大问题,利用传统最值法改进的双层极值法,以荷电状态(stage of charge,SOC)作为均衡目标变量,对增补电池组进行快速放电均衡;最后,设计充放电及静置均衡实验,对比传统最值法,分析常态及故障切除后电路的均衡速度与均衡效率。结果表明,提出的双层均衡方法可以将均衡速度提升约10%,且故障切除后电路的均衡效率最高可达95%以上。
文摘电池的荷电状态(state of charge,SOC)和健康状态(state of health,SOH)作为电动汽车动力电池的重要指标,准确估计SOC与SOH对确保电动汽车运行高效、安全以及稳定有着重要意义。由于SOC与SOH之间有着耦合关系,单独估计SOC或SOH都会造成估计精度的影响,因此联合估计SOC与SOH是当前迫切需要解决的问题。联合估计策略主要分为基于模型方法、数据驱动方法以及混合方法,并对每类方法进行了分析与总结,最后阐述了SOC与SOH联合估计的发展趋势。
文摘采用有限元法分别对锂离子电池的荷电状态(state of charge,SOC)、内部缺陷(气泡缺陷、析锂缺陷和浸润不完全缺陷)与超声透射特性之间的影响规律进行了仿真分析。首先,利用Voronoi多边形建立了锂离子电池内部的多层多孔结构;其次,在仿真过程中,通过改变正负极材料的力学参数(杨氏模量和密度)实现了锂离子电池不同荷电状态下超声透射特性的提取。仿真结果表明,随着荷电状态的增加,快纵波的声强幅值和慢纵波的声强幅值均呈现线性增加的规律,慢纵波的渡越时间呈现线性减小的规律。随后,对锂离子电池内部不同缺陷形式进行仿真分析。通过对比正常电池和缺陷电池的声透射信息可以发现:当锂离子电池底部存在气泡缺陷时,透射信号的声强幅值显著衰减,且随着气泡厚度的增加,声强幅值的衰减也在增加;此外,随着气泡位置的改变,透射信号的声强幅值也呈现规律性变化;当锂离子电池内部存在析锂缺陷时,透射信号的声强幅值和渡越时间均随着析锂厚度的增加而逐渐减小;当锂离子电池内部存在浸润不完全缺陷时,仿真模型将退化为单相多孔介质,频域中也只存在一个频率成分,且声强幅值存在衰减。研究内容解决了用有限元法对锂离子电池荷电状态、内部缺陷进行模拟处理的问题,且慢纵波波速的仿真结果与理论结果吻合良好。
文摘电动汽车(electric vehicle,EV)既是交通网的车流负荷,又是电网的用电负荷,它的出行以及充电行为会对交通网和电网的运行规律造成影响。针对电动汽车单体进行随机抽样的传统预测方法,未能从电动汽车群体的移动运行状态考虑,提出了一种基于交通均衡理论的电动汽车充电负荷预测方法。首先在时间和空间两个维度上,分别对电动汽车和路网进行建模,采用A*算法构建电动汽车出行原目的地(origin-destination,OD)对的有效的路径集。计及用户有限理性,引入分时电价制定了一种计及交通流量约束的充电站电价,并结合随机效用理论与分时电价,建立了半动态交通均衡模型来求解交通流的分配。随后基于组合荷电状态(calculation method of combined state of charge,CSOC)的概率数值计算方法对电动汽车充电负荷进行求解。最后,基于上海市新能源汽车数据,分别以改进的13节点路网和上海市某区域路网分析验证了所提充电负荷预测方法的有效性,结果表明所提方法可以降低充电成本,缓解充电站充电压力。
文摘利用扩展卡尔曼滤波(extend Kalman filter,EKF)算法估计锂电池的荷电状态(state of charge,SOC)时,经常会遇到SOC初值设定不准确和非高斯观测噪声干扰的问题,直接造成估计精度不高。为解决上述问题,该文建立锂电池的一阶戴维南等效电路模型,提出最大熵准则下,分阶段变换观测噪声协方差的扩展卡尔曼滤波算法估计锂电池SOC。该算法在SOC起始估计阶段利用小数量级观测噪声协方差提升收敛速度,并以观测残差一阶低通滤波值的第一次正负状态转换作为收敛判据。当判断估计值已快速收敛至容许误差范围内时,算法自适应地切换为大数量级观测噪声协方差来保证后续估计波形的平滑度,同时引入最大熵准则以迭代递推形式实时修正观测噪声的统计特性,用来减小非高斯观测噪声对估计精度的影响。结果表明,所提方法估计SOC的综合性能优异、鲁棒性强,具有很好的工程应用价值。