期刊文献+
共找到312篇文章
< 1 2 16 >
每页显示 20 50 100
基于DAE-BLS的锂离子电池剩余使用寿命预测方法 被引量:3
1
作者 张洪生 尚鑫磊 《计算机集成制造系统》 北大核心 2025年第3期1038-1047,共10页
为解决锂离子电池剩余使用寿命(RUL)预测中存在的实际容量难以准确测量、噪声信息影响算法性能等诸多问题,提出一种基于去噪自编码器(DAE)和宽度学习系统(BLS)相结合的预测方法。首先,从电池充放电曲线中提取多个与电池退化高度相关的... 为解决锂离子电池剩余使用寿命(RUL)预测中存在的实际容量难以准确测量、噪声信息影响算法性能等诸多问题,提出一种基于去噪自编码器(DAE)和宽度学习系统(BLS)相结合的预测方法。首先,从电池充放电曲线中提取多个与电池退化高度相关的健康因子(HI),并使用滑动时间窗口制备训练样本。其次,将样本输入DAE进行去噪处理。然后,将经过处理的样本输入BLS,预测电池RUL,并通过调整窗口大小和模型参数,得到最优模型。最后,利用MIT-Stanford电池退化数据集验证该方法的有效性。实验结果表明,相比于已有预测方法,所提方法在预测精度上具有更好的表现。 展开更多
关键词 锂离子电池 剩余使用寿命 健康因子 去噪自编码器 宽度学习系统
在线阅读 下载PDF
基于融合特征和OOA-BiGRU的锂离子电池剩余使用寿命预测方法 被引量:1
2
作者 孙静 翟千淳 《电工技术学报》 北大核心 2025年第9期2996-3012,共17页
随着新能源汽车产业的持续发展,锂离子电池被大量用作车载动力电池。电池管理系统(BMS)负责监测、评估、维护和优化锂离子电池的性能和寿命,其中剩余使用寿命(RUL)预测是BMS中的重要组成部分。该文提出一种基于融合特征和鱼鹰优化算法(O... 随着新能源汽车产业的持续发展,锂离子电池被大量用作车载动力电池。电池管理系统(BMS)负责监测、评估、维护和优化锂离子电池的性能和寿命,其中剩余使用寿命(RUL)预测是BMS中的重要组成部分。该文提出一种基于融合特征和鱼鹰优化算法(OOA)优化双向门控循环单元(BiGRU)网络的锂离子电池RUL预测方法。针对电池容量难以直接测量的问题,采集电池老化过程中简单易测量的电流、电压和时间数据,从中提取能反映电池老化趋势的健康因子。提出一种结合过滤器与包装器的融合特征筛选策略,降低模型的复杂度,防止模型过拟合。搭建BiGRU网络,深入地研究序列整体结构和动态特性,整合多维度特征,适应不同时间尺度的依赖关系。采用OOA对BiGRU模型内部的超参数进行有效的优化,提高了模型的预测精度,同时实现了参数的自配置。将所提方法与传统网络模型在不同电池数据上进行比对,验证所提OOA-BiGRU模型的可靠性。另外,将提出的融合特征预测与全部特征预测和过滤特征预测的效果进行比较,证明融合特征可更好地表示电池的老化程度,提高模型预测的准确度。 展开更多
关键词 锂离子电池 剩余使用寿命 双向门控循环单元 健康因子 融合特征
在线阅读 下载PDF
虚实结合的电池剩余使用寿命预测实验教学研究
3
作者 刘强 姜英姿 +4 位作者 种法力 王辉 戴前进 耿金萍 朱军 《实验技术与管理》 北大核心 2025年第7期246-252,共7页
该实验基于粒子群优化算法(PSO)对BP神经网络进行改进,利用BTS充放电测试仪对锂电池进行加速老化实验,从电池历史老化数据中提取健康因子,将其作为PSO-BP网络的输入,提高网络预测电池剩余使用寿命能力,最后利用多组电池的老化数据将传... 该实验基于粒子群优化算法(PSO)对BP神经网络进行改进,利用BTS充放电测试仪对锂电池进行加速老化实验,从电池历史老化数据中提取健康因子,将其作为PSO-BP网络的输入,提高网络预测电池剩余使用寿命能力,最后利用多组电池的老化数据将传统预测算法与优化的PSO-BP网络的预测精确度进行了对比。针对PSO算法易陷入局部最优陷阱与早熟收敛问题,选择非线性动态自适应惯性权重策略(IPSO)对算法再次进行改进,通过对比改进前后算法的预测效果,验证得出IPSO-BP算法更加优异。该实验过程可以使学生利用机器学习算法预测电池剩余使用寿命,采用虚实结合手段解决实际问题,提高实验的综合效果。 展开更多
关键词 电池剩余使用寿命 粒子群优化算法 虚实结合 健康因子
在线阅读 下载PDF
基于多尺度分解和多模型融合的锂电池剩余使用寿命预测
4
作者 王鑫 宝财吉拉呼 +3 位作者 马志强 李杰 高俊东 李开心 《太阳能学报》 北大核心 2025年第10期107-116,共10页
为了提高锂电池的剩余使用寿命预测的准确性,提出一种多尺度分解和多模型融合的锂电池剩余使用寿命预测模型,以应对容量退化数据中存在噪声和局部波动对电池剩余使用寿命预测的影响。首先,使用自适应噪声的完全集合经验模态分解将原始... 为了提高锂电池的剩余使用寿命预测的准确性,提出一种多尺度分解和多模型融合的锂电池剩余使用寿命预测模型,以应对容量退化数据中存在噪声和局部波动对电池剩余使用寿命预测的影响。首先,使用自适应噪声的完全集合经验模态分解将原始容量数据分解为若干个分量,其中高频分量包含短期局部变化和噪声,低频分量包含主要退化趋势信息。随后,采用双向长短期记忆网络和高斯过程回归对分解后的高频分量和低频分量分别进行建模,捕捉时间序列数据中的复杂模式和依赖关系,并利用自适应粒子群算法优化模型参数。最后,对预测结果进行叠加融合,并计算锂电池的剩余使用寿命。在公开数据集上通过对比、消融和泛化实验进行分析和测试。实验结果表明,所提模型在锂电池的剩余使用寿命预测任务中AE、MAE和RMSE值最低为0、0.15%和0.18%,具有良好的泛化性和较高的准确性。 展开更多
关键词 锂离子电池 经验模态分解 深度学习 机器学习 电池剩余使用寿命预测
在线阅读 下载PDF
基于DWD-SVR模型的锂离子电池剩余使用寿命预测
5
作者 王小明 何叶 +3 位作者 王路路 吴红斌 徐斌 赵文广 《太阳能学报》 北大核心 2025年第2期52-59,共8页
针对锂离子电池容量退化特性的非线性和多尺度特性,提出一种基于离散小波分解(DWD)和支持向量回归(SVR)模型的锂离子电池RUL预测方法。首先,利用DWD对容量时间序列进行多尺度解耦,以降低局部再生和波动现象对预测结果的影响;其次,利用K... 针对锂离子电池容量退化特性的非线性和多尺度特性,提出一种基于离散小波分解(DWD)和支持向量回归(SVR)模型的锂离子电池RUL预测方法。首先,利用DWD对容量时间序列进行多尺度解耦,以降低局部再生和波动现象对预测结果的影响;其次,利用K-均值聚类方法将各尺度信号中样本熵与排列熵相近的子序列进行聚类,根据聚类结果将复杂度与随机性相近的子序列进行重构,以减少建模次数,提高预测效率;最后,通过SVR预测模型精确捕捉不同尺度下容量信号的变化情况,实现电池RUL准确预测。实验结果表明,提出的基于DWD-SVR模型的锂离子电池RUL预测方法能在保证全局退化趋势预测准确性的同时对波动进行及时地响应,可提高预测性能。 展开更多
关键词 锂离子电池 支持向量回归 K-均值聚类 剩余使用寿命 离散小波分解
在线阅读 下载PDF
基于注意力增强Uniformer的锂电池剩余使用寿命预测
6
作者 廖列法 刘映宝 占玉敏 《汽车技术》 北大核心 2025年第6期36-44,共9页
针对锂离子电池的剩余使用寿命(RUL)预测时常面临数据的动态变化和老化数据有限的问题,提出注意力增强Uniformer(AEUniformer)的RUL预测模型,通过Uniformer整合卷积神经网络(CNN)和自注意力机制的优势实现全面的信息感知;设计注意力引... 针对锂离子电池的剩余使用寿命(RUL)预测时常面临数据的动态变化和老化数据有限的问题,提出注意力增强Uniformer(AEUniformer)的RUL预测模型,通过Uniformer整合卷积神经网络(CNN)和自注意力机制的优势实现全面的信息感知;设计注意力引导机制(AGM)和CoordAttention实现强大的特征提取。试验结果表明,AEUniformer可以实现仅需单个老化周期的准确快速的RUL预测,数据集的平均绝对百分比误差分别为2.7%和6.16%,证明了该方法的准确性。 展开更多
关键词 电池 剩余使用寿命预测 数据驱动 统一变形器 注意力引导机制 坐标注意力
在线阅读 下载PDF
基于ABC-LSTM模型的锂离子电池剩余使用寿命预测 被引量:2
7
作者 刘勇 于怀汶 +3 位作者 刘大鹏 穆勇 王瀛洲 张秀宇 《储能科学与技术》 北大核心 2025年第1期331-345,共15页
为了保证储能系统的安全稳定运行,准确预测锂离子电池的剩余使用寿命(remaining useful life,RUL)至关重要。本工作提出了一种基于人工蜂群算法(artificial bee colony,ABC)和结合dropout技术的长短期记忆网络(long short-term memory,L... 为了保证储能系统的安全稳定运行,准确预测锂离子电池的剩余使用寿命(remaining useful life,RUL)至关重要。本工作提出了一种基于人工蜂群算法(artificial bee colony,ABC)和结合dropout技术的长短期记忆网络(long short-term memory,LSTM)相结合的综合预测模型,可有效提高锂离子电池RUL预测的准确性。首先,利用dropout正则化方法有效减轻过拟合现象的优势,提高预测模型的泛化能力。其次,引入针对容量回升及数据噪声问题的激活层网络结构,显著提升模型对复杂非线性数据的处理能力。然后,结合ABC算法优化LSTM综合预测模型的超参数,避免模型陷入局部最优解,提高RUL预测精度。最后,通过NASA研究中心及CALCE的公开数据集验证所提模型的预测准确性和鲁棒性。本工作对基于40%和60%训练数据的不同算法预测性能进行实验分析验证,并与麻雀优化算法、座头鲸优化算法等群体优化算法进行比较。实验结果表明,所提出的ABC-LSTM综合预测模型可以更加准确地捕获锂离子电池容量退化的全局趋势及局部特征,其中60%比例的RUL预测结果的均方根误差平均保持在1.02%以内,平均绝对误差平均保持在0.86%以内,拟合系数高达97%以上。 展开更多
关键词 锂离子电池 剩余使用寿命预测 长短期记忆网络 人工蜂群算法 dropout技术
在线阅读 下载PDF
基于智能数模融合的锂离子电池剩余使用寿命预测
8
作者 周文璐 郑燕萍 +1 位作者 杨丞 晏莉琴 《汽车技术》 北大核心 2025年第2期55-62,共8页
为了提高电池剩余使用寿命(RUL)的预测准确性,基于融合健康指标和构建的电池容量衰退模型,采用粒子群(PSO)优化极限学习机(ELM),结合随机扰动无迹粒子滤波(RP-UPF)的智能数模融合方法对B0005、B0006、B0018号电池的RUL进行预测。研究结... 为了提高电池剩余使用寿命(RUL)的预测准确性,基于融合健康指标和构建的电池容量衰退模型,采用粒子群(PSO)优化极限学习机(ELM),结合随机扰动无迹粒子滤波(RP-UPF)的智能数模融合方法对B0005、B0006、B0018号电池的RUL进行预测。研究结果表明:该方法在电池的整个生命周期保持了较高的预测准确性,同时,显著提升了电池RUL预测的精度。 展开更多
关键词 锂离子电池 剩余使用寿命 融合健康指标 智能数模融合方法
在线阅读 下载PDF
变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法 被引量:2
9
作者 李嘉波 王志璇 +1 位作者 田迪 孙中麟 《储能科学与技术》 北大核心 2025年第2期659-670,共12页
锂离子电池在电动汽车、可再生能源等领域广泛应用,对其剩余使用寿命(remaining useful life,RUL)进行精确预测,能够实时把握电池的内在性能退化状态,降低电池使用风险。本工作提出了一种基于变模态分解(variational mode decomposition... 锂离子电池在电动汽车、可再生能源等领域广泛应用,对其剩余使用寿命(remaining useful life,RUL)进行精确预测,能够实时把握电池的内在性能退化状态,降低电池使用风险。本工作提出了一种基于变模态分解(variational mode decomposition,VMD)、麻雀优化算法(sparrow search algorithm,SSA)和长短期记忆网络(long short-term memory,LSTM)的组合预测算法对锂离子电池剩余寿命进行预测。首先,基于锂离子电池电流、电压以及温度曲线,提取等压差充电时间、等压差充电能量、放电温度峰值和恒流充电时间作为预测RUL的间接健康因子。其次,采用变模态分解法分解容量以避免容量回升的局部波动和测试噪声对RUL预测结果造成干扰。针对传统LSTM模型超参数设置易受到经验和随机性的影响,提出了麻雀优化算法对LSTM模型参数进行优化,以提升模型的预测能力。最后,应用NASA和CALCE数据集,将所提模型与其他模型进行对比。实验结果表明,锂离子电池RUL预测均方根误差控制在2%以内,所提方法具有较高的预测性能。 展开更多
关键词 锂离子电池 剩余使用寿命 变模态分解 麻雀优化算法 长短期记忆网络
在线阅读 下载PDF
基于WD-ISSA-LSTM的锂电池剩余使用寿命预测
10
作者 王健 崔俊 +1 位作者 王晓佳 于昊铜 《机械设计与制造》 北大核心 2025年第9期139-144,共6页
锂离子电池是纯电动汽车供能的主要形式,针对目前锂离子电池剩余使用寿命(RUL)预测精度低,模型适应性不强等问题,提出一种WD-ISSA-LSTM的锂电池RUL预测方法。首先对马里兰大学公开数据集中的CX2-36和CX2-38两块电池的原始数据进行小波... 锂离子电池是纯电动汽车供能的主要形式,针对目前锂离子电池剩余使用寿命(RUL)预测精度低,模型适应性不强等问题,提出一种WD-ISSA-LSTM的锂电池RUL预测方法。首先对马里兰大学公开数据集中的CX2-36和CX2-38两块电池的原始数据进行小波降噪处理;其次利用Logistic混沌映射初始化种群和加入动态权重因子去改进麻雀搜索算法(SSA);最后,采用ISSA对长短期记忆网络(LSTM)的超参数进行优化,用优化后的LSTM实现滚动预测。预测结果表明:与单一的LSTM预测相比,预测精度有了很大的提高,均方根误差均保持在1%之内,拟合程度提高了16%,并在CX2-34电池上验证了该方法的适应性。 展开更多
关键词 电池 剩余使用寿命 小波降噪 改进麻雀搜索算法 LSTM
在线阅读 下载PDF
融合CEEMDAN分解与集成机器学习的锂电池剩余使用寿命预测方法
11
作者 张旭龙 周渝杰 +1 位作者 张朝龙 杨忠 《重庆理工大学学报(自然科学)》 北大核心 2025年第4期59-66,共8页
为提高电池状态监测的精度和剩余使用寿命(remaining useful life,RUL)的准确性,通过自适应噪声完全经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)算法对电池放电数据进行预处理,然后结... 为提高电池状态监测的精度和剩余使用寿命(remaining useful life,RUL)的准确性,通过自适应噪声完全经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)算法对电池放电数据进行预处理,然后结合多个机器学习模型对CEEMDAN预处理后的数据进行建模预测。利用CEEMDAN算法对锂离子动力电池容量老化数据进行预处理,分解锂离子动力电池容量老化数据,使用皮尔斯相关性分析与网格搜索的方法确定分解参数,从而确定分解层数,分解后得到残差数据序列与本征模态(intrinsic mode functions,IMFs)数据序列。利用Transformer神经网络对得到的残差数据序列建模预测,同时利用长短时记忆(long short-term memory,LSTM)神经网络对得到的IMFs数据序列建模预测。将2个模型得到的预测结果融合,得到锂离子动力电池未来容量老化轨迹,并通过计算得到电池的RUL。采用NASA锂离子电池B0005与B0018进行验证,结果表明所提出的锂离子动力电池RUL预测方法具有更好的鲁棒性且在非线性跟踪方面具有更好的表现。 展开更多
关键词 锂离子动力电池 剩余使用寿命 自适应噪声完全经验模态分解 长短时记忆神经网络
在线阅读 下载PDF
基于自适应噪声完全集合经验模态分解与BiLSTM-Transformer的锂离子电池剩余使用寿命预测 被引量:6
12
作者 刘斌 吉春霖 +2 位作者 曹丽君 武欣雅 段云凤 《电力系统保护与控制》 EI CSCD 北大核心 2024年第15期167-177,共11页
锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全。针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer的... 锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全。针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer的锂离子电池剩余使用寿命预测方法。首先,利用自适应噪声完全集合经验模态分解方法对锂离子电池电容量数据进行分解。其次,使用串联的双向长短期记忆神经网络和Transformer网络对分解后得到的残差序列和本征模态分量序列进行建模预测。最后,将预测的若干本征模态分量序列和残差序列进行求和,并对求和之后的最终预测数据与原始数据进行RUL预测。采用NASA公开的电池数据集对所提方法进行验证,结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差和绝对误差控制分别控制在0.0173、0.0231、1.2084%和3个循环周期以内,能够有效地提高锂离子电池RUL的预测精度。 展开更多
关键词 锂离子电池 剩余使用寿命预测 Transformer网络 双向长短期记忆网络 完全集合经验模态分解
在线阅读 下载PDF
基于递进预测法的锂电池剩余使用寿命预测
13
作者 吴铁洲 刘冉阳 +2 位作者 王飞年 汪少夫 梁梦君 《电源技术》 CAS 北大核心 2024年第12期2410-2418,共9页
针对锂离子电池剩余使用寿命(remaining useful life,RUL)预测精度低的问题,提出一种递进预测的方法。首先,使用训练集中放电容量和放电电压训练卷积神经网络(convolutional neural netwok,CNN)-长短期记忆网络(long short-term memory ... 针对锂离子电池剩余使用寿命(remaining useful life,RUL)预测精度低的问题,提出一种递进预测的方法。首先,使用训练集中放电容量和放电电压训练卷积神经网络(convolutional neural netwok,CNN)-长短期记忆网络(long short-term memory neural network,LSTM)模型,并应用于训练集得到预测循环寿命,完成初步预测。其次,使用双指数模型(double exponential model,DEM)从训练集中辨识与预测循环寿命最接近的电池参数,并作为均值函数输入高斯过程回归(Gaussian process regression,GPR)模型。最后,使用测试集的电池循环数和电池容量训练GPR模型,并用于RUL预测。实验结果表明,本方法在99%的置信水平下,平均绝对百分比误差在6%以内,准确率百分比在90%以上,证明了所提方法的可靠性。 展开更多
关键词 电池 剩余寿命预测 卷积神经网络 长短时神经网络 高斯过程回归
在线阅读 下载PDF
基于PCA-GWO-GRU的锂离子电池剩余使用寿命预测 被引量:5
14
作者 李钰 卓晓军 +1 位作者 刘洋 李重洋 《矿冶工程》 CAS 北大核心 2024年第4期95-99,共5页
为了提高GRU神经网络模型预测锂离子电池剩余使用寿命时的准确性,提出基于PCA-GWO优化的GRU模型,并应用于锂离子电池剩余寿命预测。结果表明,与传统GRU模型相比,经PCA-GWO算法优化的GRU模型具有更高的预测精度。预测起始点为原始数据90%... 为了提高GRU神经网络模型预测锂离子电池剩余使用寿命时的准确性,提出基于PCA-GWO优化的GRU模型,并应用于锂离子电池剩余寿命预测。结果表明,与传统GRU模型相比,经PCA-GWO算法优化的GRU模型具有更高的预测精度。预测起始点为原始数据90%时,预测精度达到最大,对应的均方根误差RMSE为0.0049、平均绝对误差MAE为0.0036、决定系数R^(2)为0.9863。 展开更多
关键词 锂离子电池 剩余使用寿命预测 GRU 灰狼算法 主成分分析
在线阅读 下载PDF
锂离子电池剩余使用寿命预测方法综述 被引量:10
15
作者 李炳金 韩晓霞 +2 位作者 张文杰 曾伟国 武晋德 《储能科学与技术》 CAS CSCD 北大核心 2024年第4期1266-1276,共11页
近年来,随着锂离子电池的能量密度、功率密度逐渐提升,其安全性能与剩余使用寿命预测变得愈发重要。本综述全面分析了锂电池剩余使用寿命预测领域研究现状,系统介绍了现有预测算法,并着重探讨了机器学习方法在该领域的应用。基于模型的... 近年来,随着锂离子电池的能量密度、功率密度逐渐提升,其安全性能与剩余使用寿命预测变得愈发重要。本综述全面分析了锂电池剩余使用寿命预测领域研究现状,系统介绍了现有预测算法,并着重探讨了机器学习方法在该领域的应用。基于模型的方法包括电化学模型、等效电路模型和经验退化模型;基于数据驱动的方法涵盖了支持向量回归、高斯过程回归、极限学习机、卷积神经网络、循环神经网络和Transformer等常用的机器学习方法。本文详细分析了每种方法的优缺点,并重点阐述了机器学习方法在特征提取与融合方法等方面的应用及发展情况。对于特征提取,本文从电流电压温度曲线、IC曲线、EIS曲线中进行总结分析;对于融合方法,本文将其细分为模型-模型、数据-模型、数据-数据融合方法并进行分析。最后,针对当前研究存在的问题,本综述从早期预测、在线预测和多工况预测3个方面提出了对剩余使用寿命预测方法的研究建议,为提升锂电池剩余使用寿命预测算法的准确性和实用性提供思路。 展开更多
关键词 锂离子电池 剩余使用寿命 数据驱动 机器学习
在线阅读 下载PDF
融合K-means聚类和序列分解的实车锂电池剩余使用寿命预测 被引量:4
16
作者 梁弘毅 陈继开 +3 位作者 刘万里 兰凤崇 莫丙达 陈吉清 《汽车工程》 EI CSCD 北大核心 2024年第4期634-642,共9页
电动汽车锂离子动力电池健康状态(SOH)衰退过程受使用工况影响存在较多波动,导致模型预测精度下降,在锂电池剩余使用寿命(RUL)短期预测时,SOH波动情况不可忽略,为了准确预测SOH短期内波动情况,须从实车上传的锂电池运行数据中提取有效... 电动汽车锂离子动力电池健康状态(SOH)衰退过程受使用工况影响存在较多波动,导致模型预测精度下降,在锂电池剩余使用寿命(RUL)短期预测时,SOH波动情况不可忽略,为了准确预测SOH短期内波动情况,须从实车上传的锂电池运行数据中提取有效的健康因子。本文建立一种联合分布特征输入和序列分解融合的锂电池RUL预测方法,使用K-means聚类方法构建车辆锂电池运行过程的联合分布特征,并通过S-G滤波器对SOH衰退曲线进行序列分解,分别使用长短时记忆神经网络(LSTM)和多层感知机(MLP)对趋势部分和波动部分进行预测,融合得到最终预测结果。理论分析和实车采集数据验证表明,融合模型可以在预测车辆锂电池RUL短期衰退趋势的同时预测SOH的波动情况,有较高的短期预测精度。 展开更多
关键词 锂离子动力电池 剩余使用寿命预测 数据驱动 深度学习
在线阅读 下载PDF
基于改进相关向量机的锂电池剩余使用寿命预测 被引量:7
17
作者 侯小康 袁裕鹏 童亮 《电源技术》 CAS 北大核心 2024年第2期289-298,共10页
精确预测锂离子电池剩余使用寿命对于保障设备安全运行十分重要。但电池寿命预测中存在诸如数据噪声和容量再生等不确定性来源,这将导致预测精度大幅下降。为解决这一问题,使用变分模态分解方法对从充电和容量数据中提取的健康因子进行... 精确预测锂离子电池剩余使用寿命对于保障设备安全运行十分重要。但电池寿命预测中存在诸如数据噪声和容量再生等不确定性来源,这将导致预测精度大幅下降。为解决这一问题,使用变分模态分解方法对从充电和容量数据中提取的健康因子进行滤波分解,并利用贝叶斯优化方法对相关参数进行优化,提出一种基于多核相关向量机的锂离子电池剩余使用寿命预测模型。利用美国国家航空航天局(NASA)和Oxford电池数据集对所提出的模型进行验证,研究结果表明:所提出的基于变分模态分解和贝叶斯优化的多核相关向量机(VMD-BAYES-HRVM)方法的预测性能不受预测起始点和截止电压的影响,预测结果准确性更高,95%置信区间的跨度更小,证明了所提出方法的有效性。 展开更多
关键词 锂离子电池 剩余使用寿命 变分模态分解 贝叶斯优化 多核相关向量机
在线阅读 下载PDF
基于蚁狮优化高斯过程回归的锂电池剩余使用寿命预测 被引量:3
18
作者 冯娜娜 杨明 +2 位作者 惠周利 王瑞洁 宁弘扬 《储能科学与技术》 CAS CSCD 北大核心 2024年第5期1643-1652,共10页
迅速获取精确的锂电池的剩余使用寿命和健康状态,对于维持锂电池的可靠性至关重要。针对锂电池剩余使用寿命(remaining useful life,RUL)预测精度较低,传统的高斯过程回归(Gaussian process regression,GPR)模型的超参数寻优结果不理想... 迅速获取精确的锂电池的剩余使用寿命和健康状态,对于维持锂电池的可靠性至关重要。针对锂电池剩余使用寿命(remaining useful life,RUL)预测精度较低,传统的高斯过程回归(Gaussian process regression,GPR)模型的超参数寻优结果不理想、预测效果差等问题,使用蚁狮优化算法(ant-lion optimization algorithm,ALO)对高斯过程回归的超参数进行寻优,实现锂电池剩余使用寿命的精确预测。首先,根据电池充电过程中电池电压的循环曲线,提取了6个参数作为电池的健康因子,然后采用Pearson相关系数验证健康因子与电池容量的相关关系,最终选出平均放电电压、恒流充电阶段电池存储的充电量、整个充电阶段电池存储的充电量以及时间积分中的放电温度这4个参数作为健康因子。最后,利用支持向量回归(support vector regression,SVR)、GPR和ALO-GPR对锂电池RUL进行预测,对各项指标进行比较分析。并将本工作所提出的模型与其他文献所提出的模型进行了比较。通过NASA锂电池数据集验证了模型的有效性,实验结果表明,所提出ALO-GPR的RUL预测模型误差小,均方根误差控制在1%以内,平均绝对误差控制在0.65%以内,泛化性强,具有良好的应用前景。 展开更多
关键词 电池 高斯过程回归 蚁狮优化算法 剩余使用寿命
在线阅读 下载PDF
多尺度分解下GRU-TCN集成的动力电池剩余使用寿命预测方法 被引量:2
19
作者 刘佳 马志强 +2 位作者 刘广忱 高俊东 李宏勋 《储能科学与技术》 CAS CSCD 北大核心 2024年第3期1009-1018,共10页
精准预测动力电池的剩余使用寿命(remaining useful life,RUL)能够提前规避因电池过度使用带来的风险,为退役电池的二次利用提供决策依据,提升电池第二寿命的利用率。为了降低动力电池RUL预测任务中噪声和容量回升现象导致的非线性特征... 精准预测动力电池的剩余使用寿命(remaining useful life,RUL)能够提前规避因电池过度使用带来的风险,为退役电池的二次利用提供决策依据,提升电池第二寿命的利用率。为了降低动力电池RUL预测任务中噪声和容量回升现象导致的非线性特征对RUL预测精度的影响,提出了一种基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)、门控循环单元网络(gated recurrent unit,GRU)和时序卷积网络(temporal convolutional networks,TCN)集成的动力电池RUL预测模型。首先,使用EEMD对原始数据进行分解,动力电池容量衰退过程中由噪声和容量回升现象导致的非线性特征被分解到高频分量,而原始容量数据的主要趋势被分解到低频分量。其次,再使用GRU和TCN网络分别对高频分量和低频分量进行预测。最后,使用Attention对预测结果进行集成。在NASA数据集上的实验结果表明,本工作提出的集成模型的预测精度和对非线性特征的拟合程度都优于其他单一模型和其他同类型模型,最大平均绝对误差和最大均方根误差分别在0.52%和0.74%内,绝对误差在1个循环周期内,证明本模型有较好的RUL预测能力。 展开更多
关键词 动力电池 剩余使用寿命 经验模态分解 门控循环单元网络 时序卷积网络
在线阅读 下载PDF
基于膨胀应力的锂离子电池剩余使用寿命预测 被引量:5
20
作者 于淼 朱昱豪 +1 位作者 顾鑫 商云龙 《电气工程学报》 CSCD 北大核心 2024年第1期49-56,共8页
准确快速预测锂离子电池剩余使用寿命(Remaining useful life, RUL)对系统安全稳定运行至关重要。然而,电池内部退化机理复杂,外部运行工况多变,给RUL预测带来了极大挑战。为此,提出了一种基于电池膨胀应力的RUL预测方法。提取电池膨胀... 准确快速预测锂离子电池剩余使用寿命(Remaining useful life, RUL)对系统安全稳定运行至关重要。然而,电池内部退化机理复杂,外部运行工况多变,给RUL预测带来了极大挑战。为此,提出了一种基于电池膨胀应力的RUL预测方法。提取电池膨胀应力信息,分别分析可逆膨胀和不可逆膨胀与容量之间的关系,并计算相关性。将可逆膨胀和不可逆膨胀作为特征参数,构建并训练长短期记忆(Long short-term memory, LSTM)神经网络,实现RUL精准快速预测。通过在UMBL公开数据集上验证,利用膨胀应力特征能更好地学习电池老化状态,捕捉电池容量下降趋势。结果表明,在不同循环起点和多种老化条件下,RMSE和MAE分别小于0.82%和0.70%,所提出的方法能够精准快速预测RUL,鲁棒性强。 展开更多
关键词 锂离子电池 剩余使用寿命 电池膨胀 LSTM网络
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部