The mechanism and characteristics of electrochemical oxidation of 1,4-dichlorobenzen in simulated wastewater were investigated on a platinum electrode.The cyclic voltammetric profiles showed that the oxidation peak po...The mechanism and characteristics of electrochemical oxidation of 1,4-dichlorobenzen in simulated wastewater were investigated on a platinum electrode.The cyclic voltammetric profiles showed that the oxidation peak potential and current density increased with the increase of the concentration of 1,4-dichlorobenzene,nevertheless,the oxidation potential of 1,4-dichlorobenzene in acetonitrile-aqueous solution was smaller than that in acetonitrile solution.Chronoamperometric experimental results suggested that the 1,4-dichlorobenzene degradation included both direct electro-oxidation of 1,4-dichlorobenzene by loss of electrons and indirect oxidation with anodically formed free radicals.Additionally,parachlorophenol,1,4-benzoquinone,maleic acid,oxalic acid,acetic acid,and formic acid were identified as main electro-oxidation products by ion chromatography or high performance liquid chromatography.Moreover,a yellow polymer film,which influenced the electrochemical oxidation process,was clearly identified as a rough surface after electrochemical reaction in comparison to a smooth and glossy surface of platinum electrodes without polymer film as observed from SEM image.展开更多
Anode electro-catalysts for direct dimethyl-ether fuel cell (DDFC), Pt/C, PtRu/C (1∶1) and PtSn/C (3∶2), were prepared by chemical impregnation-reductio n method with formaldehyde as the reductant. DME electro-oxida...Anode electro-catalysts for direct dimethyl-ether fuel cell (DDFC), Pt/C, PtRu/C (1∶1) and PtSn/C (3∶2), were prepared by chemical impregnation-reductio n method with formaldehyde as the reductant. DME electro-oxidation and adsorptio n at Pt electrode and Pt electro-catalysts were investigated by Cyclic Voltammet ry(CV), Quasi-steady state polarization and Gas Chromatography(GC). CV showed th at there were two current peaks of DME electro-oxidation at Pt electrode around 0.8V (vs RHE); DME was adsorbed at Pt electrode more weakly and slowly than oxyg en, methanol, even hydrogen; the onset potential of DME oxidation was 50mV less than that of methanol, and DME peak potential 110 mV lower, thus more advantageo us for using in fuel cells than methanol. GC showed that small amount of HCHO wa s generated during DME electro-oxidation. The mechanism of DME electro-oxidation was proposed. Among the three electro-catalysts (Pt/C, PtRu/C and PtSn/C), Pt a lloy catalysts, especially PtRu/C, showed a higher performance toward DME electr o-oxidation, as in the case of methanol. Temperature experiments showed that bot h DME electro-oxidation and adsorption on Pt and Pt alloy catalysts were favored with increased temperature.展开更多
The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electro...The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electrolyte,Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3),utilizing cyclic voltammetry and square wave voltammetry techniques.The results show that Fe(Ⅲ)reduction occurs in two steps:Fe(Ⅲ)+e^(−)→Fe(Ⅱ),Fe(Ⅱ)+2e^(−)→Fe,and that the redox process of Fe(Ⅲ)/Fe(Ⅱ)at the tungsten electrode is an irreversible reaction controlled by diffusion.The diffusion coefficients of Fe(Ⅲ)in the molten Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3)in the temperature range of 1248–1278 K are between 1.86×10^(−6)cm^(2)/s and 1.58×10^(−4)cm^(2)/s.The diffusion activation energy of Fe(Ⅲ)in the molten salt is 1825.41 kJ/mol.As confirmed by XRD analysis,potentiostatic electrolysis at−0.857 V(vs.O_(2)/O_(complex)^(2-))for 6 h produces metallic iron on the cathode.展开更多
The influence of soaking time on the nonlinear electrical behavior and dielectric properties of TiO2-based varistor ceramics was investigated. Based on single sintering process, six disk samples of (Sr, Bi, Si, Ta)-...The influence of soaking time on the nonlinear electrical behavior and dielectric properties of TiO2-based varistor ceramics was investigated. Based on single sintering process, six disk samples of (Sr, Bi, Si, Ta)-doped TiO2-based varistor ceramics were fabricated by sintering at 1 250 ℃ for 0.5-5.0 h. The samples were characterized by X-ray diffraction, voltage-current characteristics, energy spectra, metallographs, breakdown voltages, and apparent dielectric constant. It is found that the breakdown electrical field intensity at a current density of 10 mA/cma decreases from 5.5 to 4.1 V/mm first and then increases to 7.0 V/mm, the nonlinear coefficient increases from 2.39 to 2.62 first and then decreases to 2.42, and the apparent dielectric constant increases from 98 200 to 1l5 049 first and then decreases to 73 865 with the soaking time increasing from 0.5 to 5.0 h. These indicate that the optimal soaking time is 2.0-3.0 h considering both nonlinear electrical behavior and dielectric properties.展开更多
The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic...The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray(EDX) and scanning electron microscopy(SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25– 1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.展开更多
文摘The mechanism and characteristics of electrochemical oxidation of 1,4-dichlorobenzen in simulated wastewater were investigated on a platinum electrode.The cyclic voltammetric profiles showed that the oxidation peak potential and current density increased with the increase of the concentration of 1,4-dichlorobenzene,nevertheless,the oxidation potential of 1,4-dichlorobenzene in acetonitrile-aqueous solution was smaller than that in acetonitrile solution.Chronoamperometric experimental results suggested that the 1,4-dichlorobenzene degradation included both direct electro-oxidation of 1,4-dichlorobenzene by loss of electrons and indirect oxidation with anodically formed free radicals.Additionally,parachlorophenol,1,4-benzoquinone,maleic acid,oxalic acid,acetic acid,and formic acid were identified as main electro-oxidation products by ion chromatography or high performance liquid chromatography.Moreover,a yellow polymer film,which influenced the electrochemical oxidation process,was clearly identified as a rough surface after electrochemical reaction in comparison to a smooth and glossy surface of platinum electrodes without polymer film as observed from SEM image.
文摘Anode electro-catalysts for direct dimethyl-ether fuel cell (DDFC), Pt/C, PtRu/C (1∶1) and PtSn/C (3∶2), were prepared by chemical impregnation-reductio n method with formaldehyde as the reductant. DME electro-oxidation and adsorptio n at Pt electrode and Pt electro-catalysts were investigated by Cyclic Voltammet ry(CV), Quasi-steady state polarization and Gas Chromatography(GC). CV showed th at there were two current peaks of DME electro-oxidation at Pt electrode around 0.8V (vs RHE); DME was adsorbed at Pt electrode more weakly and slowly than oxyg en, methanol, even hydrogen; the onset potential of DME oxidation was 50mV less than that of methanol, and DME peak potential 110 mV lower, thus more advantageo us for using in fuel cells than methanol. GC showed that small amount of HCHO wa s generated during DME electro-oxidation. The mechanism of DME electro-oxidation was proposed. Among the three electro-catalysts (Pt/C, PtRu/C and PtSn/C), Pt a lloy catalysts, especially PtRu/C, showed a higher performance toward DME electr o-oxidation, as in the case of methanol. Temperature experiments showed that bot h DME electro-oxidation and adsorption on Pt and Pt alloy catalysts were favored with increased temperature.
基金Project(52074084)supported by the National Natural Science Foundation of China。
文摘The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electrolyte,Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3),utilizing cyclic voltammetry and square wave voltammetry techniques.The results show that Fe(Ⅲ)reduction occurs in two steps:Fe(Ⅲ)+e^(−)→Fe(Ⅱ),Fe(Ⅱ)+2e^(−)→Fe,and that the redox process of Fe(Ⅲ)/Fe(Ⅱ)at the tungsten electrode is an irreversible reaction controlled by diffusion.The diffusion coefficients of Fe(Ⅲ)in the molten Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3)in the temperature range of 1248–1278 K are between 1.86×10^(−6)cm^(2)/s and 1.58×10^(−4)cm^(2)/s.The diffusion activation energy of Fe(Ⅲ)in the molten salt is 1825.41 kJ/mol.As confirmed by XRD analysis,potentiostatic electrolysis at−0.857 V(vs.O_(2)/O_(complex)^(2-))for 6 h produces metallic iron on the cathode.
基金Project(50872001) supported by the National Natural Science Foundation of ChinaProjects(KJ2007B132, KJ2009A006Z) supported by the Scientific Research Foundation of Education Department of Anhui Province, ChinaProject(XJ200907) supported by the Foundation of Construction of Quality Project of Anhui University, China
文摘The influence of soaking time on the nonlinear electrical behavior and dielectric properties of TiO2-based varistor ceramics was investigated. Based on single sintering process, six disk samples of (Sr, Bi, Si, Ta)-doped TiO2-based varistor ceramics were fabricated by sintering at 1 250 ℃ for 0.5-5.0 h. The samples were characterized by X-ray diffraction, voltage-current characteristics, energy spectra, metallographs, breakdown voltages, and apparent dielectric constant. It is found that the breakdown electrical field intensity at a current density of 10 mA/cma decreases from 5.5 to 4.1 V/mm first and then increases to 7.0 V/mm, the nonlinear coefficient increases from 2.39 to 2.62 first and then decreases to 2.42, and the apparent dielectric constant increases from 98 200 to 1l5 049 first and then decreases to 73 865 with the soaking time increasing from 0.5 to 5.0 h. These indicate that the optimal soaking time is 2.0-3.0 h considering both nonlinear electrical behavior and dielectric properties.
基金financial assistance from Tehran University of Medical Sciences,Tehran,Iran
文摘The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray(EDX) and scanning electron microscopy(SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25– 1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.