在碳中和的背景下,作为一种无污染的可再生能源,氢能在能源转型中占据着越来越重要的地位。传统的氢电耦合直流微电网设计方案中,制氢设备并联嵌入直流微网,并作为一种灵活性负载参与系统调控以平替部分储能的功能。但是碱液电解槽(alka...在碳中和的背景下,作为一种无污染的可再生能源,氢能在能源转型中占据着越来越重要的地位。传统的氢电耦合直流微电网设计方案中,制氢设备并联嵌入直流微网,并作为一种灵活性负载参与系统调控以平替部分储能的功能。但是碱液电解槽(alkaline water electrolyzer,AWE)具有低压大电流的特点。随着直流微电网电压等级的提升,传统的并联结构一方面增加了电力电子装置的电压转换比的需求,另一方面忽略了碱液电解槽的电热特性。针对以上问题,该文提出了一种基于虚拟热敏电阻的串联型氢电耦合直流微电网稳定控制策略。首先,针对碱液电解槽建立了一套等效电热模型以表征最大电流与温度的关系。在此基础上,提出了一种电堆串联结构的碱液电解制氢模块(series-connectedstacks alkaline water electrolysis module,SAWEM)及其控制策略。串联结构能降低单个电堆输入电压,而虚拟热敏电阻控制策略能实现各电堆间精确合理的功率分配,且对直流微网有功率支撑作用。最后,通过简易的光伏制氢硬件实验平台进行了验证,结果表明该控制方法具有良好的实用性和有效性。展开更多
文摘在碳中和的背景下,作为一种无污染的可再生能源,氢能在能源转型中占据着越来越重要的地位。传统的氢电耦合直流微电网设计方案中,制氢设备并联嵌入直流微网,并作为一种灵活性负载参与系统调控以平替部分储能的功能。但是碱液电解槽(alkaline water electrolyzer,AWE)具有低压大电流的特点。随着直流微电网电压等级的提升,传统的并联结构一方面增加了电力电子装置的电压转换比的需求,另一方面忽略了碱液电解槽的电热特性。针对以上问题,该文提出了一种基于虚拟热敏电阻的串联型氢电耦合直流微电网稳定控制策略。首先,针对碱液电解槽建立了一套等效电热模型以表征最大电流与温度的关系。在此基础上,提出了一种电堆串联结构的碱液电解制氢模块(series-connectedstacks alkaline water electrolysis module,SAWEM)及其控制策略。串联结构能降低单个电堆输入电压,而虚拟热敏电阻控制策略能实现各电堆间精确合理的功率分配,且对直流微网有功率支撑作用。最后,通过简易的光伏制氢硬件实验平台进行了验证,结果表明该控制方法具有良好的实用性和有效性。