期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
复杂背景条件下的电气设备图像实例分割算法 被引量:2
1
作者 张志君 张惊雷 贾鑫 《电子测量技术》 北大核心 2024年第1期110-117,共8页
变电站巡检拍摄的电气设备可见光图像存在背景杂乱、目标轮廓不规则等特点,造成设备分割精度不高,影响智能巡检系统设备识别效果。基于此,提出一种改进的YOLACT++模型,实现设备目标精确实例分割。首先,设计了电气设备特征提取主干网络DA... 变电站巡检拍摄的电气设备可见光图像存在背景杂乱、目标轮廓不规则等特点,造成设备分割精度不高,影响智能巡检系统设备识别效果。基于此,提出一种改进的YOLACT++模型,实现设备目标精确实例分割。首先,设计了电气设备特征提取主干网络DAGNet,提升了网络对复杂背景下重要特征的关注度;同时在原型网络分支引入3D注意力模块SimAM,降低混乱背景对目标分割的干扰。使用某市8个区域58座110 kV变电站和86座35 kV变电站巡检所得避雷器、断路器等6类电气设备的1730张可见光图像的标记数据集对该模型进行验证,实验结果表明,改进YOLACT++模型分割的AP_(all)指标为84.1%,相较原模型提高了4.4%,与YOLACT、Mask R-CNN和YOLOv8模型相比分别高出4.0%、9.3%、1.6%,较好地实现了6类电气设备的识别,可满足电力巡检中准确性和快速性的要求。 展开更多
关键词 电气设备识别 实例分割 YOLACT++ 可见光图像
在线阅读 下载PDF
基于优化YOLOv4的主要电气设备智能检测及调参策略 被引量:32
2
作者 律方成 牛雷雷 +2 位作者 王胜辉 谢庆 王子豪 《电工技术学报》 EI CSCD 北大核心 2021年第22期4837-4848,共12页
基于无人机和巡检机器人搭载的多光谱成像检测是高压设备非接触检测的发展趋势,而主要电气设备的识别是其绝缘状态智能诊断的基础。该文建立了绝缘子、均压环、防振锤、套管和导线训练与测试数据库;基于YOLOv4,改进了Mosaic数据扩充算法... 基于无人机和巡检机器人搭载的多光谱成像检测是高压设备非接触检测的发展趋势,而主要电气设备的识别是其绝缘状态智能诊断的基础。该文建立了绝缘子、均压环、防振锤、套管和导线训练与测试数据库;基于YOLOv4,改进了Mosaic数据扩充算法,使网络误差降低了0.7,识别准确度提高到84.3%;研究了基于边界框回归的交并比(IoU)算法对不同尺度检测目标的影响,提出了对大、小目标分别采用CIoU和GIoU的训练策略;研究了K-means和分层聚类算法对自建数据库的标注值宽高数据聚类效果及检测结果的影响;基于误差、识别准确度和训练速度,研究并优化了YOLOv4的网络参数,改进后的模型训练误差降低了3%,识别准确度提高了0.8%,较好地实现了主要电气设备的识别。该研究可用于多光谱成像电气设备运行状态的现场诊断。 展开更多
关键词 电气设备识别 YOLOv4 数据扩充算法 交并比 K-means和层次聚类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部