为实现不同光学模态信息优势互补,以助力电力设备故障检测与定位任务,该文采用可见光图像增强红外图像的纹理信息。针对现有红外-可见光图像配准技术难以精确对齐电力设备局部精细化结构的问题,首次提出自适应监督重训配准算法(adaptive...为实现不同光学模态信息优势互补,以助力电力设备故障检测与定位任务,该文采用可见光图像增强红外图像的纹理信息。针对现有红外-可见光图像配准技术难以精确对齐电力设备局部精细化结构的问题,首次提出自适应监督重训配准算法(adaptive registration algorithm with supervision and retraining,ARSR),主要包括双阶各向异性高斯方向导数机制(dual order anisotropic Gaussian directional derivative,Dual-AGDD)以及双视图匹配参数重训框架(double-view matching parameter retraining,DVMPR)。首先,提出Dual-AGDD完成特征点筛选与定向。1阶AGDD进行自适应电力设备局部细化角点检测,2阶AGDD构建高斯特征三角形确定特征点主方向,采用局部强度不变性方法构建特征描述子。接着,提出DVMPR框架对图像透视尺度与视野旋转进行制约校正。最后,基于3σ原则改进支持向量回归,对误匹配点进行剔除,完成异源数据配准。试验结果显示,对不同旋转和尺度差异、不同环境的电力设备异源图像进行配准时,该文算法的平均定位误差为2.65,平均配准精确率为98.57%,具有较强的图像旋转、尺度不变性和环境鲁棒性,显著优于现有CAO-C2F、SuperPoint-SuperGlue等配准算法,可提高电力设备精细化结构异源图像配准精度。展开更多
红外与可见光图像融合(infrared and visible image fusion,IVIF)将红外图像与可见光图像的互补信息融合,提升图像质量以支持下游任务。鉴于深度学习在图像融合方面的优势,将其应用在IVIF领域已成为研究热点。对深度学习框架下的红外与...红外与可见光图像融合(infrared and visible image fusion,IVIF)将红外图像与可见光图像的互补信息融合,提升图像质量以支持下游任务。鉴于深度学习在图像融合方面的优势,将其应用在IVIF领域已成为研究热点。对深度学习框架下的红外与可见光图像融合方法进行梳理分析,根据不同的融合框架将融合方法分为基于自编码器、卷积神经网络、生成对抗网络和变换器,并对比分析这四类方法的特点;综述了IVIF的主要应用领域、常用的6个数据集和8个评价指标,并在典型数据集上对各类主流IVIF方法进行定性和定量评估。最后,总结了现有IVIF方法的局限性,并展望了IVIF的未来研究方向。展开更多
文摘为实现不同光学模态信息优势互补,以助力电力设备故障检测与定位任务,该文采用可见光图像增强红外图像的纹理信息。针对现有红外-可见光图像配准技术难以精确对齐电力设备局部精细化结构的问题,首次提出自适应监督重训配准算法(adaptive registration algorithm with supervision and retraining,ARSR),主要包括双阶各向异性高斯方向导数机制(dual order anisotropic Gaussian directional derivative,Dual-AGDD)以及双视图匹配参数重训框架(double-view matching parameter retraining,DVMPR)。首先,提出Dual-AGDD完成特征点筛选与定向。1阶AGDD进行自适应电力设备局部细化角点检测,2阶AGDD构建高斯特征三角形确定特征点主方向,采用局部强度不变性方法构建特征描述子。接着,提出DVMPR框架对图像透视尺度与视野旋转进行制约校正。最后,基于3σ原则改进支持向量回归,对误匹配点进行剔除,完成异源数据配准。试验结果显示,对不同旋转和尺度差异、不同环境的电力设备异源图像进行配准时,该文算法的平均定位误差为2.65,平均配准精确率为98.57%,具有较强的图像旋转、尺度不变性和环境鲁棒性,显著优于现有CAO-C2F、SuperPoint-SuperGlue等配准算法,可提高电力设备精细化结构异源图像配准精度。
文摘红外与可见光图像融合(infrared and visible image fusion,IVIF)将红外图像与可见光图像的互补信息融合,提升图像质量以支持下游任务。鉴于深度学习在图像融合方面的优势,将其应用在IVIF领域已成为研究热点。对深度学习框架下的红外与可见光图像融合方法进行梳理分析,根据不同的融合框架将融合方法分为基于自编码器、卷积神经网络、生成对抗网络和变换器,并对比分析这四类方法的特点;综述了IVIF的主要应用领域、常用的6个数据集和8个评价指标,并在典型数据集上对各类主流IVIF方法进行定性和定量评估。最后,总结了现有IVIF方法的局限性,并展望了IVIF的未来研究方向。