A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefo...A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefore,this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers.This study measured Electrochemical Surface Area(ECSA),Electrochemical Impedance Spectroscopy(EIS),X-ray Diffraction analysis(XRD),and X-ray Fluorescence(XRF).Furthermore,the round-trip efficiency(RTE)of the MEA,as w ell as the performance in FC and WE mode,was measured.In comparison,The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer.This result was supported by electrode characterization data for XRD and XRF.The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single cata-lyst layer,and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC,which is 100%at a current density of 4 mA·cm-2.展开更多
As the proton transport channel and binder within the catalytic layer(CL),the physicochemical properties of the ionomer can affect the CL microstructure and performance of the membrane electrode assembly.In this paper...As the proton transport channel and binder within the catalytic layer(CL),the physicochemical properties of the ionomer can affect the CL microstructure and performance of the membrane electrode assembly.In this paper,we select ionomers with different side-chain lengths and investigate the effects of the side-chain structure and content of the ionomers on the performance of membrane electrode assembly(MEA).Electrochemical tests show that at a mass ratio of 10 wt.%of ionomer/Ir(I/Ir),long-side-chain(LSC)ionomer exhibits the best performance(2.141 V@2.00 A/cm^(2),while short-side-chain(SSC)ionomer is 2.208 V@2.00 A/cm^(2)).The MEA containing LSC ionomer shows better electrochemical performance than the SSC at the same I/Ir mass ratio,especially at high current density.The MEA containing LSC ionomer has a larger average pore size and porosity,which indicates that it may have better mass-transfer properties.From the analysis of voltage loss,it can be seen that LSC ionomers have a smaller ohmic impedance and mass transfer resistance than SSC ionomers.In conclusion,LSC ionomers are more conducive to water-gas transport,which can provide excellent water electrolysis performance.This article focuses on the optimization of ionomer side chains and content,which can enhance PEM water electrolysis performance at lower cost.展开更多
基金support from the Ministry of Higher Education Malaysia under grant HICOE-2023-005.
文摘A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefore,this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers.This study measured Electrochemical Surface Area(ECSA),Electrochemical Impedance Spectroscopy(EIS),X-ray Diffraction analysis(XRD),and X-ray Fluorescence(XRF).Furthermore,the round-trip efficiency(RTE)of the MEA,as w ell as the performance in FC and WE mode,was measured.In comparison,The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer.This result was supported by electrode characterization data for XRD and XRF.The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single cata-lyst layer,and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC,which is 100%at a current density of 4 mA·cm-2.
基金Project(52271013)supported by the National Natural Science Foundation of ChinaProject(23DZ1200600)supported by the Science and Technology Innovation Action Plan of Shanghai,China。
文摘As the proton transport channel and binder within the catalytic layer(CL),the physicochemical properties of the ionomer can affect the CL microstructure and performance of the membrane electrode assembly.In this paper,we select ionomers with different side-chain lengths and investigate the effects of the side-chain structure and content of the ionomers on the performance of membrane electrode assembly(MEA).Electrochemical tests show that at a mass ratio of 10 wt.%of ionomer/Ir(I/Ir),long-side-chain(LSC)ionomer exhibits the best performance(2.141 V@2.00 A/cm^(2),while short-side-chain(SSC)ionomer is 2.208 V@2.00 A/cm^(2)).The MEA containing LSC ionomer shows better electrochemical performance than the SSC at the same I/Ir mass ratio,especially at high current density.The MEA containing LSC ionomer has a larger average pore size and porosity,which indicates that it may have better mass-transfer properties.From the analysis of voltage loss,it can be seen that LSC ionomers have a smaller ohmic impedance and mass transfer resistance than SSC ionomers.In conclusion,LSC ionomers are more conducive to water-gas transport,which can provide excellent water electrolysis performance.This article focuses on the optimization of ionomer side chains and content,which can enhance PEM water electrolysis performance at lower cost.