期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一个有效的基于GBRT的早期电影票房预测模型 被引量:13
1
作者 韩忠明 原碧鸿 +2 位作者 陈炎 赵宁 段大高 《计算机应用研究》 CSCD 北大核心 2018年第2期410-416,共7页
电影票房预测是一个具有挑战性的问题,尤其是早期预测电影票房。基于社会媒体等预测方法存在准确度低、难以早期预测等问题,提出了一种基于GBRT模型的早期电影票房预测模型。对影响电影票房的因素进行特征化处理,选择包括演员、导演、... 电影票房预测是一个具有挑战性的问题,尤其是早期预测电影票房。基于社会媒体等预测方法存在准确度低、难以早期预测等问题,提出了一种基于GBRT模型的早期电影票房预测模型。对影响电影票房的因素进行特征化处理,选择包括演员、导演、上映日期以及公司等在内的九种因素,分别采用社会网络节点影响力度量法、平均票房权重区间化等不同的特征化方法;然后,生成34个特征作为影响电影票房的因变量,对特征与电影票房建立GBRT模型。选择2000—2015年间的1 875部电影以及相应的8 203名影人和3 300家公司进行了大量实验,实验结果表明该模型具有良好的预测效果,相对准确率达到80.6%,对部分2016年新电影进行预测,其误差在10%以内。 展开更多
关键词 梯度回归树(GBRT) 电影早期因素 电影票房预测 影响力度量
在线阅读 下载PDF
基于神经网络的电影票房预测建模 被引量:44
2
作者 郑坚 周尚波 《计算机应用》 CSCD 北大核心 2014年第3期742-748,共7页
针对电影票房预测与分类的研究中存在预测精度不高、缺乏实际应用价值等缺陷,通过对中国电影票房市场的研究,提出一种基于反馈神经网络的电影票房预测模型。首先,确定电影票房的影响因素以及输出结果格式;其次,对这些影响因子进行定量... 针对电影票房预测与分类的研究中存在预测精度不高、缺乏实际应用价值等缺陷,通过对中国电影票房市场的研究,提出一种基于反馈神经网络的电影票房预测模型。首先,确定电影票房的影响因素以及输出结果格式;其次,对这些影响因子进行定量分析和归一量化处理;再次,根据确定的输入和输出变量确定各个网络层次神经元数量,建立神经网络结构,改进神经网络预测的算法和流程,建立票房预测模型;最后,用经过去噪处理的电影历史票房数据对神经网络进行训练。针对神经网络波动性的特点,对预测模型的输出结果进行改进之后,输出结果既能更可靠地反映电影在上映期间的票房收入,又能指出电影票房的波动范围。仿真结果表明,对于实验中的192部电影,基于神经网络算法的预测模型有较好的预测和分类性能(前5周票房的平均相对误差为43.2%,平均分类正确率可达93.69%),能够为电影在上映前的投资、宣传以及风险评估提供较全面、可靠的参考方案,在预测分类领域具有较好的应用价值和研究前景。 展开更多
关键词 多层反馈神经网络 电影票房预测 票房分类 影响因素量化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部