A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power netwo...A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power networks.A suitable bus was first identified using modal analysis method.The single shunt capacitor,single SVC,and single STATCOM were installed separately on the most critical bus.The effects of the installation of different devices on power loss reduction,voltage profile improvement,and voltage stability margin enhancement were examined and compared for 57-and 118-bus transmission systems.The comparative study results show that SVC,and STATCOM are expensive compared to shunt capacitor,yet the effect of installing STATCOM is better than SVC and the effect of installing SVC is better than that of shunt capacitor in achieving power loss reduction,voltage profile improvement and voltage stability margin enhancement.展开更多
A new insight into the constant current-constant voltage (CC-CV) charge protocol based on the spherical diffusion model was presented. From the model, the CV-charge process compensates, to a large extent, the capaci...A new insight into the constant current-constant voltage (CC-CV) charge protocol based on the spherical diffusion model was presented. From the model, the CV-charge process compensates, to a large extent, the capacity loss in the CC process, and the capacity loss increases with increasing the charging rate and decreases with increasing the lithium-ion diffusion coefficient and using a smaller r value (smaller particle-size and larger diffusion coefficient) and a lower charge rate will be helpful to decreasing the capacity loss. The results show that the CC and the CV charging processes, in some way, are complementary and the capacity loss during the CC charging process due to the large electrochemical polarization can be effectively compensated from the CV charging process.展开更多
In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is...In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is great important.In this work,a combination of a fuzzy multi-objective approach and bacterial foraging optimization(BFO) as a meta-heuristic algorithm is used to solve the simultaneous reconfiguration and optimal sizing of DGs and shunt capacitors in a distribution system.Each objective is transferred into fuzzy domain using its membership function.Then,the overall fuzzy satisfaction function is formed and considered a fitness function inasmuch as the value of this function has to be maximized to gain the optimal solution.The numerical results show that the presented algorithm improves the performance much more than other meta-heuristic algorithms.Simulation results found that simultaneous reconfiguration with DG and shunt capacitors allocation(case 5) has 77.41%,42.15%,and 56.14%improvements in power loss reduction,load balancing,and voltage profile indices,respectively in 33-bus test system.This result found 87.27%,35.82%,and 54.34%improvements of mentioned indices respectively for 69-bus system.展开更多
文摘A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power networks.A suitable bus was first identified using modal analysis method.The single shunt capacitor,single SVC,and single STATCOM were installed separately on the most critical bus.The effects of the installation of different devices on power loss reduction,voltage profile improvement,and voltage stability margin enhancement were examined and compared for 57-and 118-bus transmission systems.The comparative study results show that SVC,and STATCOM are expensive compared to shunt capacitor,yet the effect of installing STATCOM is better than SVC and the effect of installing SVC is better than that of shunt capacitor in achieving power loss reduction,voltage profile improvement and voltage stability margin enhancement.
基金Projects(20676152, 20876178) supported by the National Natural Science Foundation of China
文摘A new insight into the constant current-constant voltage (CC-CV) charge protocol based on the spherical diffusion model was presented. From the model, the CV-charge process compensates, to a large extent, the capacity loss in the CC process, and the capacity loss increases with increasing the charging rate and decreases with increasing the lithium-ion diffusion coefficient and using a smaller r value (smaller particle-size and larger diffusion coefficient) and a lower charge rate will be helpful to decreasing the capacity loss. The results show that the CC and the CV charging processes, in some way, are complementary and the capacity loss during the CC charging process due to the large electrochemical polarization can be effectively compensated from the CV charging process.
文摘In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is great important.In this work,a combination of a fuzzy multi-objective approach and bacterial foraging optimization(BFO) as a meta-heuristic algorithm is used to solve the simultaneous reconfiguration and optimal sizing of DGs and shunt capacitors in a distribution system.Each objective is transferred into fuzzy domain using its membership function.Then,the overall fuzzy satisfaction function is formed and considered a fitness function inasmuch as the value of this function has to be maximized to gain the optimal solution.The numerical results show that the presented algorithm improves the performance much more than other meta-heuristic algorithms.Simulation results found that simultaneous reconfiguration with DG and shunt capacitors allocation(case 5) has 77.41%,42.15%,and 56.14%improvements in power loss reduction,load balancing,and voltage profile indices,respectively in 33-bus test system.This result found 87.27%,35.82%,and 54.34%improvements of mentioned indices respectively for 69-bus system.