基于电网换相换流器(line commutation converter,LCC)的特高压直流输电系统(ultra-high voltage direct current,UHVDC)是远距离大容量输电的主要技术手段。为尽可能避免系统稳定裕度不足带来的直流降功率事件,提出一种频率偏差与电压...基于电网换相换流器(line commutation converter,LCC)的特高压直流输电系统(ultra-high voltage direct current,UHVDC)是远距离大容量输电的主要技术手段。为尽可能避免系统稳定裕度不足带来的直流降功率事件,提出一种频率偏差与电压刚度约束下的多直流馈入受端电网优化调度方法。首先,基于一次调频模型,推导出频率稳定性对系统中最大直流输送功率的约束条件;其次,提出评价多直流同时换相失败恢复特性的电压刚度指标,并基于该指标建立多直流馈入受端电网的电压稳定约束;然后,综合考虑频率和电压稳定约束以及多种运行约束的情况下,建立多直流馈入受端电网优化调度模型;最后,在一个改进的IEEE 39节点系统中进行测试。结果表明,所提方法能够通过改变开机方式和直流功率,保证系统频率和电压稳定性满足要求,避免强直弱交带来的安全稳定风险。展开更多
文摘基于电网换相换流器(line commutation converter,LCC)的特高压直流输电系统(ultra-high voltage direct current,UHVDC)是远距离大容量输电的主要技术手段。为尽可能避免系统稳定裕度不足带来的直流降功率事件,提出一种频率偏差与电压刚度约束下的多直流馈入受端电网优化调度方法。首先,基于一次调频模型,推导出频率稳定性对系统中最大直流输送功率的约束条件;其次,提出评价多直流同时换相失败恢复特性的电压刚度指标,并基于该指标建立多直流馈入受端电网的电压稳定约束;然后,综合考虑频率和电压稳定约束以及多种运行约束的情况下,建立多直流馈入受端电网优化调度模型;最后,在一个改进的IEEE 39节点系统中进行测试。结果表明,所提方法能够通过改变开机方式和直流功率,保证系统频率和电压稳定性满足要求,避免强直弱交带来的安全稳定风险。