在微源半桥变流器串联结构星型连接微电网(half-bridge converter series Y-connection microgrid,HCSY-MG)系统中,由于环境因素(如风速、光照等)影响,各风、光微源的输出功率存在显著差异,导致系统三相输出功率不一致,进而引发三相并...在微源半桥变流器串联结构星型连接微电网(half-bridge converter series Y-connection microgrid,HCSY-MG)系统中,由于环境因素(如风速、光照等)影响,各风、光微源的输出功率存在显著差异,导致系统三相输出功率不一致,进而引发三相并网电流不对称,严重影响系统的并网运行。为解决该问题,提出了一种正序分量合成零序电压注入和过调制补偿相结合的控制方法。该方法利用与三相电网电压同相位的正序分量合成零序电压,与传统方法相比,简化了计算过程。然而,零序电压注入的功率平衡能力有限,当三相功率不平衡程度较大时,系统容易发生过调制。为此,过调制补偿通过修改零序电压,进一步扩大了系统的相间功率平衡范围,从而确保在相间功率不平衡的情况下,系统仍然能够正常运行,且并网电流能够满足并网要求。最后,通过仿真和实验验证了所提控制策略的正确性与可行性。展开更多
为拓展并联型有源电力滤波器(active power filter,APF)的应用,通过采用电路等效分析的方法,研究并联型APF对电压源型非线性负载的补偿特性,重点分析负载谐波电流放大效应,定性与定量地解释产生此效应的原因。在此基础上,从电路拓扑以及...为拓展并联型有源电力滤波器(active power filter,APF)的应用,通过采用电路等效分析的方法,研究并联型APF对电压源型非线性负载的补偿特性,重点分析负载谐波电流放大效应,定性与定量地解释产生此效应的原因。在此基础上,从电路拓扑以及APF控制两方面提出抑制谐波放大效应的措施,使得并联型APF对电压源型非线性负载取得良好的补偿效果。仿真与实验结果验证了理论分析的正确性。展开更多
文摘在微源半桥变流器串联结构星型连接微电网(half-bridge converter series Y-connection microgrid,HCSY-MG)系统中,由于环境因素(如风速、光照等)影响,各风、光微源的输出功率存在显著差异,导致系统三相输出功率不一致,进而引发三相并网电流不对称,严重影响系统的并网运行。为解决该问题,提出了一种正序分量合成零序电压注入和过调制补偿相结合的控制方法。该方法利用与三相电网电压同相位的正序分量合成零序电压,与传统方法相比,简化了计算过程。然而,零序电压注入的功率平衡能力有限,当三相功率不平衡程度较大时,系统容易发生过调制。为此,过调制补偿通过修改零序电压,进一步扩大了系统的相间功率平衡范围,从而确保在相间功率不平衡的情况下,系统仍然能够正常运行,且并网电流能够满足并网要求。最后,通过仿真和实验验证了所提控制策略的正确性与可行性。
文摘为拓展并联型有源电力滤波器(active power filter,APF)的应用,通过采用电路等效分析的方法,研究并联型APF对电压源型非线性负载的补偿特性,重点分析负载谐波电流放大效应,定性与定量地解释产生此效应的原因。在此基础上,从电路拓扑以及APF控制两方面提出抑制谐波放大效应的措施,使得并联型APF对电压源型非线性负载取得良好的补偿效果。仿真与实验结果验证了理论分析的正确性。