期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Rate Law for Photoelectrochemical Water Splitting Over CuO
1
作者 Bo-Yuan Gao Wen-HuaLeng 《电化学(中英文)》 CAS 北大核心 2024年第8期17-27,共11页
Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as ... Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts. 展开更多
关键词 CUO Photoelectrochemical water splitting Electrochemical impedance spectroscopy Rate law Kinetics of photogenerated carriers
在线阅读 下载PDF
Pre-dispersed carbon black as conductive agent for LiFePO_4 cathodes 被引量:1
2
作者 张治安 屈长明 +2 位作者 贾明 赖延清 李劼 《Journal of Central South University》 SCIE EI CAS 2014年第7期2604-2611,共8页
High dispersed carbon black was applied for LiFePO4 cathodes as conductive agent.Nano-conductive carbon agent was pre-dispersed with poly acrylic acid(PAA) as dispersant in organic N-methyl-pyrrolidone(NMP) solvent sy... High dispersed carbon black was applied for LiFePO4 cathodes as conductive agent.Nano-conductive carbon agent was pre-dispersed with poly acrylic acid(PAA) as dispersant in organic N-methyl-pyrrolidone(NMP) solvent system.The dispersion property of nano-conductive carbon agent was evaluated using particle size distribution measurements,scanning electron microscopy(SEM) and transmission electron microscope(TEM).LiFePO4 cathode with as-received nano-conductive carbon agent(SP) and LiFePO4 cathode with pre-dispersed nano-conductive carbon agent(SP-PAA) were examined by scanning electron microscopy(SEM),cyclic voltammetry(CV),electrochemical impendence spectroscopy(EIS) and charge/discharge cycling performance.Results show that the dispersion property of carbon black is improved by using PAA as the dispersant.The LiFePO4 cathodes with SP-PAA exhibit improved rate behaviors(4C,135.1 mAh/g) and cycle performance(95%,200 cycles) compared to LiFePO4 cathodes with SP(4C,103.9 mAh/g and 83%,200 cycles).Because pre-dispersed carbon black(SP-PAA) is dispersed homogeneously in the dried composite electrode to form a more uniform conductive network between the active material particles,electrochemical performances of the LiFePO4 cathodes are improved. 展开更多
关键词 LiFePO4 cathode carbon black DISPERSION poly acrylic acid
在线阅读 下载PDF
Electrochemical impedance spectra of V_2O_5 xerogel films with intercalation of lithium ion 被引量:1
3
作者 张勇 刘玉文 +1 位作者 程玉山 胡信国 《Journal of Central South University of Technology》 2005年第3期309-314,共6页
Vanadium pentoxide xerogel films used for lithium rechargeable batteries were prepared from crystalline c-V2O5 by melt quenching method,then the electrochemical process of lithium intercalation into vanadium pentoxide... Vanadium pentoxide xerogel films used for lithium rechargeable batteries were prepared from crystalline c-V2O5 by melt quenching method,then the electrochemical process of lithium intercalation into vanadium pentoxide xerogel films was simulated with an equivalent circuit model, which was derived from the mechanism of electrode reactions. Measured electrochemical impedance spectra at various electrode potentials were analyzed by using the complex non-linear least-squares fitting method. The results show that impedance spectra consist of 2 high-to- medium frequency depressed arcs and a low frequency straight line. The high frequency arc is attributed to the absorption reaction of lithium ions into the oxide film, the medium frequency arc is attributed to the charge transfer reaction at the vanadium oxide/electrolyte interface and the low frequency is characterized by a straight line with a phase angle of 45° corresponding to the diffusion of lithium ion through vanadium oxide phase. The experimental and calculated results are compared and discussed focusing on the electrochemical performance and the state of charge of the electrode. Moreover, the high consistence of the fitted values of the model to the experimental data indicates that this mathematical model does give a satisfying description of the intercalation process of vanadium pentoxide xerogel films. 展开更多
关键词 vanadium pentoxide xerogel films electrochemical impedance spectra equivalent circuit melt quenching method lithium rechargeable batteries
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部