Because of their low electrical conductivity,sluggish ion diffusion,and poor stability,conventional electrode materials are not able to meet the growing demands of energy storage and portable devices.Graphene assemble...Because of their low electrical conductivity,sluggish ion diffusion,and poor stability,conventional electrode materials are not able to meet the growing demands of energy storage and portable devices.Graphene assembled films(GAFs)formed from graphene nanosheets have an ultrahigh conductivity,a unique 2D network structure,and exceptional mechanical strength,which give them the potential to solve these problems.However,a systematic understanding of GAFs as an advanced electrode material is lacking.This review focuses on the use of GAFs in electrochemistry,providing a comprehensive analysis of their synthesis methods,surface/structural characteristics,and physical properties,and thus understand their structure-property relationships.Their advantages in batteries,supercapacitors,and electrochemical sensors are systematically evaluated,with an emphasis on their excellent electrical conductivity,ion transport kinetics,and interfacial stability.The existing problems in these devices,such as chemical inertness and mechanical brittleness,are discussed and potential solutions are proposed,including defect engineering and hybrid structures.This review should deepen our mechanistic understanding of the use of GAFs in electrochemical systems and provide actionable strategies for developing stable,high-performance electrode materials.展开更多
A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nicke...A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications.展开更多
基金the National Natural Science Foundation of China(22279097)the Key R&D Program of Hubei Province(2023BAB103)the PhD Scientific Research and Innovation Foundation of The Education Department of Hainan Province Joint Project of Sanya Yazhou Bay Science and Technology City(HSPHDSRF-2024-03-022)。
文摘Because of their low electrical conductivity,sluggish ion diffusion,and poor stability,conventional electrode materials are not able to meet the growing demands of energy storage and portable devices.Graphene assembled films(GAFs)formed from graphene nanosheets have an ultrahigh conductivity,a unique 2D network structure,and exceptional mechanical strength,which give them the potential to solve these problems.However,a systematic understanding of GAFs as an advanced electrode material is lacking.This review focuses on the use of GAFs in electrochemistry,providing a comprehensive analysis of their synthesis methods,surface/structural characteristics,and physical properties,and thus understand their structure-property relationships.Their advantages in batteries,supercapacitors,and electrochemical sensors are systematically evaluated,with an emphasis on their excellent electrical conductivity,ion transport kinetics,and interfacial stability.The existing problems in these devices,such as chemical inertness and mechanical brittleness,are discussed and potential solutions are proposed,including defect engineering and hybrid structures.This review should deepen our mechanistic understanding of the use of GAFs in electrochemical systems and provide actionable strategies for developing stable,high-performance electrode materials.
基金Project(KJ2012A045) supported by the Natural Science Foundation of Education Commission of Anhui Province,China
文摘A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications.