Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic...Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic coor-dination polymer[Cd(bcbpy)I_(2)]·2H_(2)O(1)was constructed.Complex 1 displays a 1D chain structure and exhibits thermochromic behavior.Under different temperature stimulation,the complex(ground)slowly changed from green to yellow-green,and with the increase of temperature,the color of complex 1 gradually deepened,and finally became orange-yellow.Therefore,complex 1 was prepared as a thermochromic film.In addition,we also performed electrochemical tests on complex 1,which showed that the complex is a semiconductor material.CCDC:2391802.展开更多
A low-cost 1D cobalt-based coordination polymer(CP)[Co(BGPD)(DMSO)_(2)(H_(2)O)_(2)](Co-BD;H2BGPD=N,N'-bis(glycinyl)pyromellitic diimide;DMSO=dimethyl sulfoxide)was synthesized by a simple method,and its crystal st...A low-cost 1D cobalt-based coordination polymer(CP)[Co(BGPD)(DMSO)_(2)(H_(2)O)_(2)](Co-BD;H2BGPD=N,N'-bis(glycinyl)pyromellitic diimide;DMSO=dimethyl sulfoxide)was synthesized by a simple method,and its crystal structure was characterized.In a three-electrode system,Co-BD,as the electrode material for supercapacitors,achieved a specific capacitance of 830 F·g^(-1)at 1 A·g^(-1),equivalent to a specific capacity of 116.4 mAh·g^(-1),and exhibited high-rate capability,reaching 212 F·g^(-1)at 20 A·g^(-1).Impressively,Co-BD||rGO(reduced graphene oxide),representing an asymmetrical supercapacitor,owns a higher energy density of 14.2 Wh·kg^(-1)at 0.80 kW·kg^(-1),and an excellent cycle performance(After 4000 cycles at 1 A·g^(-1),the capacitance retention was up to 94%).CCDC:2418872.展开更多
To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a b...To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.展开更多
Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to tre...Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to treat respiratory disorders such as asthma,bronchitis,and emphysema,has a narrow therapeutic window with a safe plasma concentration ranging from 55.5-111.0μmol·L^(-1)in adults.Accurate monitoring of TP levels is essential because too low or too high can cause se-rious side effects.In this regard,non-enzymatic electrochemical sensors offer a practical solution with rapidity,portability,and high sensitivity.This article aims to provide a comprehensive review of the recent developments of non-enzymatic electrochemical sensors for TP detection,highlighting the basic principles,electro-oxidation mechanisms,catalytic effects,and the role of modifying materials on electrode performance.Carbon-based electrodes such as glassy carbon electrodes(GCEs),carbon paste electrodes(CPEs),and carbon screen-printed electrodes(SPCEs)have become the primary choices for non-enzymatic sensors due to their chemical stability,low cost,and flexibility in modification.This article identifies the sig-nificant contribution of various modifying materials,including nanomaterials such as carbon nanotubes(CNTs),graphene,metal oxides,and multi-element nanocomposites.These modifications enhance sensors’electron transfer,sensitivity,and selectivity in detecting TP at low concentrations in complex media such as blood plasma and pharmaceutical samples.The electro-oxidation mechanism of TP is also discussed in depth,emphasizing the hydroxyl and carbonyl reaction pathways strongly influenced by pH and electrode materials.These mechanisms guide the selection of the appropriate electrode ma-terial for a particular application.The main contribution of this article is to identify superior modifying materials that can improve the performance of non-enzymatic electrochemical sensors.In a recent study,the combination of multi-element nanocomposites based on titanium dioxide(TiO_(2)),CNTs,and gold nanoparticles(AuNPs)resulted in the lowest detection limit of 3×10^(-5)μmol·L^(-1),reflecting the great potential of these materials for developing high-performance electrochemical sensors.The main conclusion of this article is the importance of a multidisciplinary approach in electrode material design to support the sensitivity and selectivity of TP detection.In addition,there is still a research gap in understanding TP’s more detailed oxidation mechanism,especially under pH variations and complex environments.Therefore,further research on electrode modification and analysis of the TP oxidation mechanism are urgently needed to improve the accuracy and sta-bility of the sensor while expanding its applications in pharmaceutical monitoring and medical diagnostics.By integrating various innovative materials and technical approaches,this review is expected to be an essential reference for developing efficient and affordable non-enzymatic electrochemical sensors.展开更多
In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intrig...In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intriguing geometry‑dependent optical chirality,which benefits the combination of plasmonic characteristics with chirality.Recent advances in the biomolecule‑directed geometric control of intrinsically chiral plasmonic nanomaterials have further provided great opportunities for their widespread applications in many emerging technological areas.In this review,we present the recent progress in biosensing using chiral inorganic nanomaterials,with a particular focus on electrochemical and enzyme‑mimicking catalytic approaches.This paper commences with a review of the basic tenets underlying chiral nanocatalysts,incorporating the chiral ligand‑induced mechanism and the architectures of intrinsically chiral nanostructures.Additionally,it methodically expounds upon the applications of chiral nanocatalysts in the realms of electrochemical biosensing and enzyme‑mimicking catalytic biosensing respectively.Conclusively,it proffers a prospective view of the hurdles and prospects that accompany the deployment of chiral nanoprobes for nascent biosensing applications.By rational design of the chiral nanoprobes,it is envisioned that biosensing with increasing sensitivity and resolution toward the single‑molecule level can be achieved,which will substantially promote sensing applications in many emerging interdisciplinary areas.展开更多
Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,t...Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,their development is restricted by the shuttling of polysulfides,large volume expansion and poor conductivity.To overcome these obstacles,an effective approach is to use carbon-based materials with abundant space for the sulfur that has sulfiphilic sites to immobilize it,and a high electrical conductivity.Hollow carbon spheres(HCSs)with a controllable structure and composition are promising for this purpose.We consider recent progress in optimizing the electrochemical performance of Na-/K-S batteries by using these materials.First,the advantages of HCSs,their synthesis methods,and strategies for preparing HCSs/sulfur composite materials are reviewed.Second,the use of HCSs in Na-/K-S batteries,along with mechanisms underlying the resulting performance improvement,are discussed.Finally,prospects for the further development of HCSs for metal−S batteries are presented.展开更多
Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have othe...Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.展开更多
The irreversible phase transition and interface side reactions during the cycling process severely limit the large scale application of nickel-rich layered oxides Li[Ni_(x)Co_(y)Mn_(1−x−y)]O_(2)(NCM,x>0.8).Herein,w...The irreversible phase transition and interface side reactions during the cycling process severely limit the large scale application of nickel-rich layered oxides Li[Ni_(x)Co_(y)Mn_(1−x−y)]O_(2)(NCM,x>0.8).Herein,we have designed LiNi_(0.8)Co_(0.1)Mn 0.1 O_(2)cathodes modified by Nb/Al co-doping and LiNbO_(3)/LiAlO_(2)composite coating.Detailed characterization reveals that Nb/Al co-doping can stabilize the crystal structure of the cathodes and expand the layer spacing of the layered lattice,thereby increasing the diffusion rate and reversibility of Li^(+).And the composite coatings can improve the electrochemical kinetic and inhibit the erosion of acidic substances by hindering direct contact between the cathodes and electrolyte.As a result,the Ni-rich cathodes with dual modification can still exhibit a higher capacity of 184.02 mA·h/g after 100 cycles with a capacity retention of up to 98.1%,and can still release a capacity of 161.6 mA·h/g at a high rate of 7 C,meanwhile,it shows excellent thermal stability compared to bare NCM.This work provides a new perspective for enhancing electrochemical properties of cathodes through integrated strategies.展开更多
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.
文摘Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic coor-dination polymer[Cd(bcbpy)I_(2)]·2H_(2)O(1)was constructed.Complex 1 displays a 1D chain structure and exhibits thermochromic behavior.Under different temperature stimulation,the complex(ground)slowly changed from green to yellow-green,and with the increase of temperature,the color of complex 1 gradually deepened,and finally became orange-yellow.Therefore,complex 1 was prepared as a thermochromic film.In addition,we also performed electrochemical tests on complex 1,which showed that the complex is a semiconductor material.CCDC:2391802.
文摘A low-cost 1D cobalt-based coordination polymer(CP)[Co(BGPD)(DMSO)_(2)(H_(2)O)_(2)](Co-BD;H2BGPD=N,N'-bis(glycinyl)pyromellitic diimide;DMSO=dimethyl sulfoxide)was synthesized by a simple method,and its crystal structure was characterized.In a three-electrode system,Co-BD,as the electrode material for supercapacitors,achieved a specific capacitance of 830 F·g^(-1)at 1 A·g^(-1),equivalent to a specific capacity of 116.4 mAh·g^(-1),and exhibited high-rate capability,reaching 212 F·g^(-1)at 20 A·g^(-1).Impressively,Co-BD||rGO(reduced graphene oxide),representing an asymmetrical supercapacitor,owns a higher energy density of 14.2 Wh·kg^(-1)at 0.80 kW·kg^(-1),and an excellent cycle performance(After 4000 cycles at 1 A·g^(-1),the capacitance retention was up to 94%).CCDC:2418872.
文摘To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.
基金the funding from Lembaga Penelitian dan Pengabdian Masyarakat(LPPM)Universitas Indonesia,by Riset Kolaborasi Indonesia(RKI)-World Class University(WCU)Program with grant number NKB-1067/UN2-RST/HKP.05.00/2023 and NKB-781/UN2.RST/HKP.05.00/2024.
文摘Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to treat respiratory disorders such as asthma,bronchitis,and emphysema,has a narrow therapeutic window with a safe plasma concentration ranging from 55.5-111.0μmol·L^(-1)in adults.Accurate monitoring of TP levels is essential because too low or too high can cause se-rious side effects.In this regard,non-enzymatic electrochemical sensors offer a practical solution with rapidity,portability,and high sensitivity.This article aims to provide a comprehensive review of the recent developments of non-enzymatic electrochemical sensors for TP detection,highlighting the basic principles,electro-oxidation mechanisms,catalytic effects,and the role of modifying materials on electrode performance.Carbon-based electrodes such as glassy carbon electrodes(GCEs),carbon paste electrodes(CPEs),and carbon screen-printed electrodes(SPCEs)have become the primary choices for non-enzymatic sensors due to their chemical stability,low cost,and flexibility in modification.This article identifies the sig-nificant contribution of various modifying materials,including nanomaterials such as carbon nanotubes(CNTs),graphene,metal oxides,and multi-element nanocomposites.These modifications enhance sensors’electron transfer,sensitivity,and selectivity in detecting TP at low concentrations in complex media such as blood plasma and pharmaceutical samples.The electro-oxidation mechanism of TP is also discussed in depth,emphasizing the hydroxyl and carbonyl reaction pathways strongly influenced by pH and electrode materials.These mechanisms guide the selection of the appropriate electrode ma-terial for a particular application.The main contribution of this article is to identify superior modifying materials that can improve the performance of non-enzymatic electrochemical sensors.In a recent study,the combination of multi-element nanocomposites based on titanium dioxide(TiO_(2)),CNTs,and gold nanoparticles(AuNPs)resulted in the lowest detection limit of 3×10^(-5)μmol·L^(-1),reflecting the great potential of these materials for developing high-performance electrochemical sensors.The main conclusion of this article is the importance of a multidisciplinary approach in electrode material design to support the sensitivity and selectivity of TP detection.In addition,there is still a research gap in understanding TP’s more detailed oxidation mechanism,especially under pH variations and complex environments.Therefore,further research on electrode modification and analysis of the TP oxidation mechanism are urgently needed to improve the accuracy and sta-bility of the sensor while expanding its applications in pharmaceutical monitoring and medical diagnostics.By integrating various innovative materials and technical approaches,this review is expected to be an essential reference for developing efficient and affordable non-enzymatic electrochemical sensors.
文摘In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intriguing geometry‑dependent optical chirality,which benefits the combination of plasmonic characteristics with chirality.Recent advances in the biomolecule‑directed geometric control of intrinsically chiral plasmonic nanomaterials have further provided great opportunities for their widespread applications in many emerging technological areas.In this review,we present the recent progress in biosensing using chiral inorganic nanomaterials,with a particular focus on electrochemical and enzyme‑mimicking catalytic approaches.This paper commences with a review of the basic tenets underlying chiral nanocatalysts,incorporating the chiral ligand‑induced mechanism and the architectures of intrinsically chiral nanostructures.Additionally,it methodically expounds upon the applications of chiral nanocatalysts in the realms of electrochemical biosensing and enzyme‑mimicking catalytic biosensing respectively.Conclusively,it proffers a prospective view of the hurdles and prospects that accompany the deployment of chiral nanoprobes for nascent biosensing applications.By rational design of the chiral nanoprobes,it is envisioned that biosensing with increasing sensitivity and resolution toward the single‑molecule level can be achieved,which will substantially promote sensing applications in many emerging interdisciplinary areas.
文摘Sodium-sulfur(Na-S)and potassium-sulfur(K-S)batteries for use at room temperature have received widespread attention because of the abundance and low cost of their raw materials and their high energy density.However,their development is restricted by the shuttling of polysulfides,large volume expansion and poor conductivity.To overcome these obstacles,an effective approach is to use carbon-based materials with abundant space for the sulfur that has sulfiphilic sites to immobilize it,and a high electrical conductivity.Hollow carbon spheres(HCSs)with a controllable structure and composition are promising for this purpose.We consider recent progress in optimizing the electrochemical performance of Na-/K-S batteries by using these materials.First,the advantages of HCSs,their synthesis methods,and strategies for preparing HCSs/sulfur composite materials are reviewed.Second,the use of HCSs in Na-/K-S batteries,along with mechanisms underlying the resulting performance improvement,are discussed.Finally,prospects for the further development of HCSs for metal−S batteries are presented.
文摘Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.
基金Project(2023JJ40759)supported by the Natural Science Foundation of Hunan Province,China。
文摘The irreversible phase transition and interface side reactions during the cycling process severely limit the large scale application of nickel-rich layered oxides Li[Ni_(x)Co_(y)Mn_(1−x−y)]O_(2)(NCM,x>0.8).Herein,we have designed LiNi_(0.8)Co_(0.1)Mn 0.1 O_(2)cathodes modified by Nb/Al co-doping and LiNbO_(3)/LiAlO_(2)composite coating.Detailed characterization reveals that Nb/Al co-doping can stabilize the crystal structure of the cathodes and expand the layer spacing of the layered lattice,thereby increasing the diffusion rate and reversibility of Li^(+).And the composite coatings can improve the electrochemical kinetic and inhibit the erosion of acidic substances by hindering direct contact between the cathodes and electrolyte.As a result,the Ni-rich cathodes with dual modification can still exhibit a higher capacity of 184.02 mA·h/g after 100 cycles with a capacity retention of up to 98.1%,and can still release a capacity of 161.6 mA·h/g at a high rate of 7 C,meanwhile,it shows excellent thermal stability compared to bare NCM.This work provides a new perspective for enhancing electrochemical properties of cathodes through integrated strategies.