The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electro...The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electrolyte,Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3),utilizing cyclic voltammetry and square wave voltammetry techniques.The results show that Fe(Ⅲ)reduction occurs in two steps:Fe(Ⅲ)+e^(−)→Fe(Ⅱ),Fe(Ⅱ)+2e^(−)→Fe,and that the redox process of Fe(Ⅲ)/Fe(Ⅱ)at the tungsten electrode is an irreversible reaction controlled by diffusion.The diffusion coefficients of Fe(Ⅲ)in the molten Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3)in the temperature range of 1248–1278 K are between 1.86×10^(−6)cm^(2)/s and 1.58×10^(−4)cm^(2)/s.The diffusion activation energy of Fe(Ⅲ)in the molten salt is 1825.41 kJ/mol.As confirmed by XRD analysis,potentiostatic electrolysis at−0.857 V(vs.O_(2)/O_(complex)^(2-))for 6 h produces metallic iron on the cathode.展开更多
Alloy anodes were studied for pursuing Sn-based microcomposite synthesis, assembly and performance for lithium ion batteries. The self-assembled Sn-Co-C composites with nano-scaled microstructures were prepared via so...Alloy anodes were studied for pursuing Sn-based microcomposite synthesis, assembly and performance for lithium ion batteries. The self-assembled Sn-Co-C composites with nano-scaled microstructures were prepared via solution method and carbothermal technology. The morphology and physical structure were investigated with scanning electron microscope (SEM) and X-ray diffraction (XRD). The as-prepared materials were assembled to half cell coin for the purpose of discussing the galvanostatic cycling, cyclic voltammetry and rate-capability performance. Results reveal that nanoscaled CoSn 2 alloys covered with Sn and C layer by layer are wrapped by cross-linked porous carbon network to form spherical microstructure. This distinguishing feature of Sn-Co-C composites provides a possible solution to the problems of Sn particle aggregation and poor electron transport, and has strong effect on improving electrochemical performance.展开更多
The electrochemical behavior of CoCl2 in 1-butyl-3-methylimidazolium hexafluorophosphate (bmim]PF6) was investigated by cyclic voltammetry. The cyclic voltammograms were obtained from electrochemical measurement under...The electrochemical behavior of CoCl2 in 1-butyl-3-methylimidazolium hexafluorophosphate (bmim]PF6) was investigated by cyclic voltammetry. The cyclic voltammograms were obtained from electrochemical measurement under different temperatures, and the reversible behavior for Co2+/Co3+ redox couple on glassy carbon electrode in bmim]PF6 was confirmed by the characteristic of the peak currents. The diffusion coefficients (about 10-11 m2/s) of Co2+ in bmim]PF6 under different temperatures were evaluated from the dependence of the peak current density on the potential scan rates in cyclic voltammograms. It is found that the diffusion coefficient increases with increasing temperature. Diffusion activation energy of Co2+ in bmim]PF6 is also calculated to be 23.4 kJ/mol according to the relationship between diffusion coefficient and temperature.展开更多
The electro-polymerization behavior of aniline in reverse(W/O) microemulsion was investigated. The experiment results show that the cyclic voltammetry polymerization behavior of aniline in W/O microemulsion is differe...The electro-polymerization behavior of aniline in reverse(W/O) microemulsion was investigated. The experiment results show that the cyclic voltammetry polymerization behavior of aniline in W/O microemulsion is different from that in aqueous solution remarkably. With the increase of scan cycle, the oxidation potential shifts positively and the reduction potential shifts negatively, i.e., the redox potential difference increases. H+ apparent concentration affects the aniline polymerization evidently. When H+ concentration is lower than 0.08 mol/L, the electro-polymerization of aniline is difficult. With the increase of H+ concentration, the polymerization current of aniline increases gradually. Only when H+ concentration is high enough(0.5 mol/L), aniline can be well electro-polymerized. Moreover, under the same condition, the aniline polymerization current in W/O microemulsion is higher than that in aqueous solution. The scanning electron microscopy image shows that the deposited polyaniline(PANI) has uniform fiber morphology with diameter of about 100 nm. Further study result suggests that the electrochemical activity of the PANI in HCl is similar to that of the PANI prepared in aqueous solution.展开更多
基金Project(52074084)supported by the National Natural Science Foundation of China。
文摘The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electrolyte,Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3),utilizing cyclic voltammetry and square wave voltammetry techniques.The results show that Fe(Ⅲ)reduction occurs in two steps:Fe(Ⅲ)+e^(−)→Fe(Ⅱ),Fe(Ⅱ)+2e^(−)→Fe,and that the redox process of Fe(Ⅲ)/Fe(Ⅱ)at the tungsten electrode is an irreversible reaction controlled by diffusion.The diffusion coefficients of Fe(Ⅲ)in the molten Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3)in the temperature range of 1248–1278 K are between 1.86×10^(−6)cm^(2)/s and 1.58×10^(−4)cm^(2)/s.The diffusion activation energy of Fe(Ⅲ)in the molten salt is 1825.41 kJ/mol.As confirmed by XRD analysis,potentiostatic electrolysis at−0.857 V(vs.O_(2)/O_(complex)^(2-))for 6 h produces metallic iron on the cathode.
基金Projects(51074185, 51274240) supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities
文摘Alloy anodes were studied for pursuing Sn-based microcomposite synthesis, assembly and performance for lithium ion batteries. The self-assembled Sn-Co-C composites with nano-scaled microstructures were prepared via solution method and carbothermal technology. The morphology and physical structure were investigated with scanning electron microscope (SEM) and X-ray diffraction (XRD). The as-prepared materials were assembled to half cell coin for the purpose of discussing the galvanostatic cycling, cyclic voltammetry and rate-capability performance. Results reveal that nanoscaled CoSn 2 alloys covered with Sn and C layer by layer are wrapped by cross-linked porous carbon network to form spherical microstructure. This distinguishing feature of Sn-Co-C composites provides a possible solution to the problems of Sn particle aggregation and poor electron transport, and has strong effect on improving electrochemical performance.
基金Project(2005-383) supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education, China
文摘The electrochemical behavior of CoCl2 in 1-butyl-3-methylimidazolium hexafluorophosphate (bmim]PF6) was investigated by cyclic voltammetry. The cyclic voltammograms were obtained from electrochemical measurement under different temperatures, and the reversible behavior for Co2+/Co3+ redox couple on glassy carbon electrode in bmim]PF6 was confirmed by the characteristic of the peak currents. The diffusion coefficients (about 10-11 m2/s) of Co2+ in bmim]PF6 under different temperatures were evaluated from the dependence of the peak current density on the potential scan rates in cyclic voltammograms. It is found that the diffusion coefficient increases with increasing temperature. Diffusion activation energy of Co2+ in bmim]PF6 is also calculated to be 23.4 kJ/mol according to the relationship between diffusion coefficient and temperature.
基金Projects(51071067,21271069,20673036,J1210040,50473022) supported by National Natural Science Foundation of ChinaProject(2013GK3015) supported by the Science and Technology Program of Hunan Province,China
文摘The electro-polymerization behavior of aniline in reverse(W/O) microemulsion was investigated. The experiment results show that the cyclic voltammetry polymerization behavior of aniline in W/O microemulsion is different from that in aqueous solution remarkably. With the increase of scan cycle, the oxidation potential shifts positively and the reduction potential shifts negatively, i.e., the redox potential difference increases. H+ apparent concentration affects the aniline polymerization evidently. When H+ concentration is lower than 0.08 mol/L, the electro-polymerization of aniline is difficult. With the increase of H+ concentration, the polymerization current of aniline increases gradually. Only when H+ concentration is high enough(0.5 mol/L), aniline can be well electro-polymerized. Moreover, under the same condition, the aniline polymerization current in W/O microemulsion is higher than that in aqueous solution. The scanning electron microscopy image shows that the deposited polyaniline(PANI) has uniform fiber morphology with diameter of about 100 nm. Further study result suggests that the electrochemical activity of the PANI in HCl is similar to that of the PANI prepared in aqueous solution.