CMAC(Cerebellar Model Articulation Controller)和PD(Proportional Derivative)复合控制算法有时因输出不平滑会引起加载电机抖动而影响控制效果.通过对该输出不平滑问题进行分析,提出了一种新的提高输出平滑性的改进CMAC复合控制算法...CMAC(Cerebellar Model Articulation Controller)和PD(Proportional Derivative)复合控制算法有时因输出不平滑会引起加载电机抖动而影响控制效果.通过对该输出不平滑问题进行分析,提出了一种新的提高输出平滑性的改进CMAC复合控制算法,该方法通过新的权值更新公式,在权值更新时直接达到减小误差和提高输出平滑性的目的.仿真和实验结果表明:改进后的算法能够有效提高输出平滑性,降低了21%的稳态误差,且保证在加载时有良好的稳定性和抗干扰能力.展开更多
针对无人机舵面电动加载系统具有非线性及多余力矩的特点,提出了一种自适应CMAC(Cerebellar Model Articulation Controller)神经网络与自适应神经元控制器并联构成复合控制结构.该控制策略以系统的指令输入和实际输出作为CMAC的激励信...针对无人机舵面电动加载系统具有非线性及多余力矩的特点,提出了一种自适应CMAC(Cerebellar Model Articulation Controller)神经网络与自适应神经元控制器并联构成复合控制结构.该控制策略以系统的指令输入和实际输出作为CMAC的激励信号,以系统的当前控制误差作为CMAC的训练信号.提出了利用误差在线自适应调整学习率的方法,消除了常规前馈型CMAC的过学习和不稳定现象.建立了无人机舵面电动加载系统的数学模型,给出了具体的控制结构和算法.仿真结果表明:该方法有效抑制了加载系统的多余力矩,增强了系统的稳定性,明显改善了舵面电动加载系统的动态性能.展开更多
针对飞机舵机电动加载系统存在多余力矩干扰的问题,提出了以改进型基于信度分配的小脑模型关节控制器为前馈控制,以增量式比例积分微分(proportion integral derivative,PID)为反馈控制的复合控制策略。在前馈控制器中,结合变刚度金属-...针对飞机舵机电动加载系统存在多余力矩干扰的问题,提出了以改进型基于信度分配的小脑模型关节控制器为前馈控制,以增量式比例积分微分(proportion integral derivative,PID)为反馈控制的复合控制策略。在前馈控制器中,结合变刚度金属-橡胶缓冲弹簧、力矩测速反馈及梯度加载法,采用基于Sigmoid函数变平衡学习常数的权值调整算法,设计三维参考输入型神经网络结构。在反馈控制器中,采用增量式PID控制解决积分项溢出问题,同时为神经网络提供训练学习样本,最后通过理论分析证明改进算法的收敛特性及闭环系统的稳定性。仿真结果表明,该方法提高了系统的加载精度及在线实时控制能力,在一定程度上抑制了多余力矩干扰。展开更多
文摘CMAC(Cerebellar Model Articulation Controller)和PD(Proportional Derivative)复合控制算法有时因输出不平滑会引起加载电机抖动而影响控制效果.通过对该输出不平滑问题进行分析,提出了一种新的提高输出平滑性的改进CMAC复合控制算法,该方法通过新的权值更新公式,在权值更新时直接达到减小误差和提高输出平滑性的目的.仿真和实验结果表明:改进后的算法能够有效提高输出平滑性,降低了21%的稳态误差,且保证在加载时有良好的稳定性和抗干扰能力.
文摘针对无人机舵面电动加载系统具有非线性及多余力矩的特点,提出了一种自适应CMAC(Cerebellar Model Articulation Controller)神经网络与自适应神经元控制器并联构成复合控制结构.该控制策略以系统的指令输入和实际输出作为CMAC的激励信号,以系统的当前控制误差作为CMAC的训练信号.提出了利用误差在线自适应调整学习率的方法,消除了常规前馈型CMAC的过学习和不稳定现象.建立了无人机舵面电动加载系统的数学模型,给出了具体的控制结构和算法.仿真结果表明:该方法有效抑制了加载系统的多余力矩,增强了系统的稳定性,明显改善了舵面电动加载系统的动态性能.
文摘针对飞机舵机电动加载系统存在多余力矩干扰的问题,提出了以改进型基于信度分配的小脑模型关节控制器为前馈控制,以增量式比例积分微分(proportion integral derivative,PID)为反馈控制的复合控制策略。在前馈控制器中,结合变刚度金属-橡胶缓冲弹簧、力矩测速反馈及梯度加载法,采用基于Sigmoid函数变平衡学习常数的权值调整算法,设计三维参考输入型神经网络结构。在反馈控制器中,采用增量式PID控制解决积分项溢出问题,同时为神经网络提供训练学习样本,最后通过理论分析证明改进算法的收敛特性及闭环系统的稳定性。仿真结果表明,该方法提高了系统的加载精度及在线实时控制能力,在一定程度上抑制了多余力矩干扰。