期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于云计算和量子粒子群算法的电力负荷曲线聚类算法研究
被引量:
24
1
作者
张少敏
赵硕
王保义
《电力系统保护与控制》
EI
CSCD
北大核心
2014年第21期93-98,共6页
针对电力数据海量化、多维化的趋势,为了提高聚类算法的聚类质量,并解决传统聚类算法聚类海量高维数据时单机计算资源不足的瓶颈,提出了一种基于云计算的电力负荷曲线聚类的并行量子粒子群优化模糊C均值聚类算法。将量子粒子群群体智能...
针对电力数据海量化、多维化的趋势,为了提高聚类算法的聚类质量,并解决传统聚类算法聚类海量高维数据时单机计算资源不足的瓶颈,提出了一种基于云计算的电力负荷曲线聚类的并行量子粒子群优化模糊C均值聚类算法。将量子粒子群群体智能算法引入到传统模糊C均值聚类算法中,利用QPSO较强的全局搜索能力,克服FCM算法易陷入局部最优以及其对初始聚类中心过于敏感的缺陷。最后,采用云计算的MapReduce编程框架以及HBase分布式数据库对算法进行并行化改进。经实验验证与FCM算法和AFCM算法相比聚类正确率提高了10%左右,且并行性能较好。
展开更多
关键词
云计算
MAPREDUCE框架
电力负荷分类
模糊C均值聚类算法
量子粒子群算法
在线阅读
下载PDF
职称材料
题名
基于云计算和量子粒子群算法的电力负荷曲线聚类算法研究
被引量:
24
1
作者
张少敏
赵硕
王保义
机构
华北电力大学控制与计算机工程学院
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2014年第21期93-98,共6页
基金
河北省科学研究项目资助(Z2012077
Z2010290)
文摘
针对电力数据海量化、多维化的趋势,为了提高聚类算法的聚类质量,并解决传统聚类算法聚类海量高维数据时单机计算资源不足的瓶颈,提出了一种基于云计算的电力负荷曲线聚类的并行量子粒子群优化模糊C均值聚类算法。将量子粒子群群体智能算法引入到传统模糊C均值聚类算法中,利用QPSO较强的全局搜索能力,克服FCM算法易陷入局部最优以及其对初始聚类中心过于敏感的缺陷。最后,采用云计算的MapReduce编程框架以及HBase分布式数据库对算法进行并行化改进。经实验验证与FCM算法和AFCM算法相比聚类正确率提高了10%左右,且并行性能较好。
关键词
云计算
MAPREDUCE框架
电力负荷分类
模糊C均值聚类算法
量子粒子群算法
Keywords
cloud computing
Mapreduce framework
power load forecasting
Fuzzy C-Means
QPSO
分类号
TM76 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于云计算和量子粒子群算法的电力负荷曲线聚类算法研究
张少敏
赵硕
王保义
《电力系统保护与控制》
EI
CSCD
北大核心
2014
24
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部