随着“双碳”目标的深入推进,近年来我国风电行业迅速发展,如何精准有效地预测风电功率对实现风机安全并网和维持系统稳定运行至关重要。针对现有风电功率预测方法存在输入特征冗余、泛化能力不足和未能充分捕捉风电出力内在特性等问题...随着“双碳”目标的深入推进,近年来我国风电行业迅速发展,如何精准有效地预测风电功率对实现风机安全并网和维持系统稳定运行至关重要。针对现有风电功率预测方法存在输入特征冗余、泛化能力不足和未能充分捕捉风电出力内在特性等问题,提出了一种基于特征优选与相似相本融合的长短期记忆网络与注意力机制(long short term memory-long short term memory,LSTM-AM)短期风电功率预测模型。首先,利用最小绝对收缩和选择算子(least absolute shrinkage and selection operator,Lasso)回归进行输入特征优选,减少冗余;然后,采用长短期记忆网络与注意力机制建立LSTM-AM融合网络模型;最后,通过欧氏距离计算提取相似历史样本,与模型输出加权作为最终预测值。实验结果表明,所提出的方法相比传统方法预测性能更优,在风电功率预测中表现出更高的准确性,能够为电力系统规划运行和可再生能源的深入应用提供支撑。展开更多
文摘随着“双碳”目标的深入推进,近年来我国风电行业迅速发展,如何精准有效地预测风电功率对实现风机安全并网和维持系统稳定运行至关重要。针对现有风电功率预测方法存在输入特征冗余、泛化能力不足和未能充分捕捉风电出力内在特性等问题,提出了一种基于特征优选与相似相本融合的长短期记忆网络与注意力机制(long short term memory-long short term memory,LSTM-AM)短期风电功率预测模型。首先,利用最小绝对收缩和选择算子(least absolute shrinkage and selection operator,Lasso)回归进行输入特征优选,减少冗余;然后,采用长短期记忆网络与注意力机制建立LSTM-AM融合网络模型;最后,通过欧氏距离计算提取相似历史样本,与模型输出加权作为最终预测值。实验结果表明,所提出的方法相比传统方法预测性能更优,在风电功率预测中表现出更高的准确性,能够为电力系统规划运行和可再生能源的深入应用提供支撑。