期刊文献+
共找到999篇文章
< 1 2 50 >
每页显示 20 50 100
考虑时空信息结合的电力系统暂态稳定评估
1
作者 李欣 李文斌 +3 位作者 赵张飞 李新宇 欧阳子帅 郭攀锋 《电力系统及其自动化学报》 北大核心 2025年第6期68-80,共13页
为进一步提升电力系统暂态稳定评估模型性能并解决数据样本不平衡导致的模型评估结果可信度低的问题,本文提出一种基于时空信息结合及损失函数改进的新型电力系统暂态稳定评估模型。首先,分别利用下采样交互卷积网络与图注意力网络充分... 为进一步提升电力系统暂态稳定评估模型性能并解决数据样本不平衡导致的模型评估结果可信度低的问题,本文提出一种基于时空信息结合及损失函数改进的新型电力系统暂态稳定评估模型。首先,分别利用下采样交互卷积网络与图注意力网络充分挖掘电力系统运行数据中的时序特征信息及空间特征信息,并采用拼接操作对特征信息进行融合,提升模型对电力系统暂态稳定特征的提取与表征能力。然后,引入焦点损失函数提升模型对失稳样本的辨识能力,并采用物理知识对其进行改进,以增加模型评估结果的可信性。最后,分别采用IEEE 39、IEEE 145和IEEE 300节点系统对所提模型进行验证,实验结果表明,所提评估模型相较其他评估模型具有更优的评估性能及可信性。 展开更多
关键词 暂态稳定评估 时空特征 图注意力 交互卷积 物理知识
在线阅读 下载PDF
融合同步知识和时空信息的电力系统暂态稳定评估框架 被引量:1
2
作者 刘雨晴 刘曌 +4 位作者 王小君 刘畅宇 裴玮 郄朝辉 窦嘉铭 《电网技术》 北大核心 2025年第6期2334-2346,共13页
新型电力系统复杂耦合特性和时变因素骤增,对暂态稳定评估(transientstabilityassessment,TSA)的准确性和快速性提出更高要求。深度学习算法的引入为TSA问题提供新的解决思路,但模型的结果可靠性问题制约其实际应用。因此提出一种融合... 新型电力系统复杂耦合特性和时变因素骤增,对暂态稳定评估(transientstabilityassessment,TSA)的准确性和快速性提出更高要求。深度学习算法的引入为TSA问题提供新的解决思路,但模型的结果可靠性问题制约其实际应用。因此提出一种融合同步知识和时空信息的评估框架,从电气特征选择、融入领域知识和模型内嵌可解释性方面提升评估性能与结果可信度。首先分析电气特征量与暂态稳定间的理论映射关系,引导模型特征选择;其次分析基于Kuramoto耦合振子模型的同步现象,将同步关键参数(节点耦合强度)引入图卷积神经网络(graph convolution network,GCN)的空间拓扑表示;在此基础上,结合内嵌可解释的Informer模型,提出Infor-GCN模型提取暂态过程特征时空耦合信息并进行特征增强;然后针对不同特征的稳定判别结果设计综合输出策略,提高模型结果可靠性。最后在IEEE-68节点系统的仿真算例表明所提方法在评估准确度和分析效率上具有优越性,并且在新样本下具备较强的泛化能力。 展开更多
关键词 暂态稳定评估 深度学习 图卷积神经网络 同步知识 时空特征
在线阅读 下载PDF
结合更新机制的电力系统暂态稳定评估研究
3
作者 刘颂凯 龚潇 +4 位作者 杨超 刘龙成 李彦彰 张磊 张雅婷 《电力科学与技术学报》 北大核心 2025年第2期1-9,共9页
电力系统是一个时变的复杂系统。近年来,基于数据驱动的机器学习方法在电力系统暂态稳定评估领域得到了广泛应用。然而,当电力系统运行受到较大扰动发生工况变化时,机器学习模型需要根据新的运行数据进行训练,故其难以及时应对新拓扑结... 电力系统是一个时变的复杂系统。近年来,基于数据驱动的机器学习方法在电力系统暂态稳定评估领域得到了广泛应用。然而,当电力系统运行受到较大扰动发生工况变化时,机器学习模型需要根据新的运行数据进行训练,故其难以及时应对新拓扑结构下系统的暂态稳定情况评估。为解决该问题,首先,提出了一种模型更新机制,按照不同条件对模型进行更新;其次,引入了基于多面近端支持向量机(multisurface proximal support vector machine,MPSVM)的斜双随机森林(oblique double random forest with MPSVM,MPDRF)模型,并将其作为分类器对电力系统的稳定状态进行评估;最后,在新英格兰10机39节点系统上的进行仿真测试,验证该方法的有效性。研究结果表明,所提的结合更新机制的电力系统暂态稳定评估方法的评估性能优于普通方法的。 展开更多
关键词 数据驱动 机器学习 暂态稳定评估 电力系统 模型更新
在线阅读 下载PDF
基于多尺度图注意力网络的电力系统暂态稳定评估
4
作者 傅太国屹 杜友田 +2 位作者 吕昊 李宗翰 刘俊 《电力系统自动化》 北大核心 2025年第3期60-70,共11页
已有基于图深度学习的暂态稳定评估方法考虑了电网的拓扑结构特征,但对电网拓扑结构图中多尺度子图间的信息传递特性没有进行有效建模,导致判稳模型对电网局部与全局动态耦合关系的捕捉不足,降低了模型在复杂扰动下的判稳精度。因此,提... 已有基于图深度学习的暂态稳定评估方法考虑了电网的拓扑结构特征,但对电网拓扑结构图中多尺度子图间的信息传递特性没有进行有效建模,导致判稳模型对电网局部与全局动态耦合关系的捕捉不足,降低了模型在复杂扰动下的判稳精度。因此,提出了一种融合多尺度子图信息传递过程的功角暂态稳定评估方法。首先,提出并构建了一种k阶图注意力网络,以不同尺度的电网拓扑子图作为图深度学习中特征提取的基本单元。然后,通过注意力机制为特征聚合分配自适应权重,以挖掘实际电网中不同细粒度区域之间的特性。最后,通过CEPRI-TAS-173系统验证了所提方法的可行性和有效性。 展开更多
关键词 暂态稳定评估 深度学习 多尺度子图 特征提取 图注意力网络
在线阅读 下载PDF
基于GCN和HGP-SL的电力系统暂态稳定评估 被引量:1
5
作者 周宇 肖健梅 王锡淮 《电气工程学报》 CSCD 北大核心 2024年第4期246-254,共9页
当前基于人工智能的电力系统暂态稳定评估研究多以欧式结构数据为输入,为了考虑系统拓扑结构对电力系统暂态稳定的影响,提出一种基于图卷积神经网络(Graph convolutional network,GCN)和具有结构学习的层次图池化(Hierarchical graph po... 当前基于人工智能的电力系统暂态稳定评估研究多以欧式结构数据为输入,为了考虑系统拓扑结构对电力系统暂态稳定的影响,提出一种基于图卷积神经网络(Graph convolutional network,GCN)和具有结构学习的层次图池化(Hierarchical graph pooling with structure learning,HGP-SL)的电力系统暂态稳定评估模型。首先,解构电力系统,以母线为节点,输电线路为边,创建图这一典型非欧式结构数据;然后,结合图深度学习思想,通过提出的GCN+HGP-SL模型对解构后形成的电力系统潮流数据进行特征提取,建立其与电力系统暂态稳定之间的映射关系,其中HGP-SL包含对节点降采样和学习节点间结构两个步骤,其目的是捕捉重要节点的同时不破坏结构本身;最后,建立性能评价指标体系,选取对照神经网络组,对所提模型进行评估,结合算例分析各因素对模型的影响。算例分析表明,所提模型具有更好的综合性能表现。 展开更多
关键词 电力系统暂态稳定评估 非欧式结构数据 图深度学习 图卷积神经网络 具有结构学习的层次图池化
在线阅读 下载PDF
基于XGboost-DF的电力系统暂态稳定评估方法 被引量:2
6
作者 李楠 张家恒 《电测与仪表》 北大核心 2024年第10期119-127,共9页
针对现代互联电网扰动后失稳模式不再单一,多摆失稳频频发生的现象,文中提出一种基于极限梯度提升-深度森林的暂态稳定评估方法。利用母线电压轨迹簇构建人工特征集,通过极限梯度提升方法对特征集进行监督特征编码;利用深度森林对监督... 针对现代互联电网扰动后失稳模式不再单一,多摆失稳频频发生的现象,文中提出一种基于极限梯度提升-深度森林的暂态稳定评估方法。利用母线电压轨迹簇构建人工特征集,通过极限梯度提升方法对特征集进行监督特征编码;利用深度森林对监督编码后的稀疏矩阵进行三分类,进而建立起大规模数据集和失稳模式的映射关系;在IEEE 39节点和IEEE 140节点系统上进行仿真分析,所提方法具有很高的准确率和抗噪性能,能有效降低多摆失稳的误判率,并且在同步相量测量单元缺失情况下仍有较强的鲁棒性。 展开更多
关键词 暂态稳定评估 多摆失稳 极限梯度提升 深度森林 稀疏矩阵
在线阅读 下载PDF
基于时空特征融合的电力系统暂态稳定评估 被引量:1
7
作者 李欣 宁静 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第6期89-100,共12页
为提高暂态评估模型对电气动态特征的提取能力,以及面临系统拓扑结构发生变化时的泛化能力,本文提出一种具有时空双通道并行结构的在线评估模型。首先,该模型基于门控循环单元(GRU)捕捉暂态时序数据的动态信息,基于图注意力网络(GAT)构... 为提高暂态评估模型对电气动态特征的提取能力,以及面临系统拓扑结构发生变化时的泛化能力,本文提出一种具有时空双通道并行结构的在线评估模型。首先,该模型基于门控循环单元(GRU)捕捉暂态时序数据的动态信息,基于图注意力网络(GAT)构建电力系统拓扑结构与暂态稳定状态的非线性拟合关系,并通过注意力机制融合两通道的时空特征,从而得到更可靠的评估结果。其次,将该模型与迁移学习技术相结合,当原系统拓扑结构发生变化后,更新模型的网络参数,实现模型的在线更新。最后,采用IEEE 39节点系统和IEEE 300节点系统进行仿真与验证,模型评估准确率分别达到98.62%和98.51%,表明所提方法能够实现高效的暂态稳定评估,且有较强的鲁棒性。 展开更多
关键词 电力系统 暂态稳定评估 深度学习 时空特征 注意力特征融合 迁移学习
在线阅读 下载PDF
基于改进长短期记忆网络的电力系统暂态稳定评估方法研究 被引量:7
8
作者 解治军 张东霞 +1 位作者 韩肖清 胡伟 《电网技术》 EI CSCD 北大核心 2024年第3期998-1007,共10页
现代电力系统海量量测数据为电力系统暂态稳定评估提供可靠的数据基础,与此同时,数据信息挖掘成为研究焦点,暂态稳定分析中不平衡故障样本以及多特征电气量时间序列数据中所蕴藏的信息仍有待深入挖掘。为此,该文提出一种结合注意力机制... 现代电力系统海量量测数据为电力系统暂态稳定评估提供可靠的数据基础,与此同时,数据信息挖掘成为研究焦点,暂态稳定分析中不平衡故障样本以及多特征电气量时间序列数据中所蕴藏的信息仍有待深入挖掘。为此,该文提出一种结合注意力机制的长短期记忆网络(long short term memory network with attention,LSTMA)方法,用以深入挖掘暂态稳定评估样本中所蕴藏的信息。在离线训练环节,以长短期记忆网络为基础分类器,引入Attention注意力机制引导模型学习样本中关键特征,并对损失函数进行改进,以此强化对不平衡样本的学习能力;在线应用环节,在目标域小样本条件下采用迁移学习方法更新成型的离线LSTMA模型,并对比不同迁移学习策略对模型性能影响,经过迁移学习建立的新运行点下的改进LSTMA模型评估精度有效提高,训练时间大幅减少,所得出的迁移学习策略确定方法有利于实际应用环节快速决策。研究在IEEE39节点和IEEE300节点系统上进行实验,验证了所提方法的有效性。 展开更多
关键词 暂态稳定评估 长短期记忆网络 注意力机制 迁移学习 不平衡样本
在线阅读 下载PDF
基于双塔Transformer的电力系统暂态稳定评估 被引量:1
9
作者 赵晨浩 焦在滨 +2 位作者 李程昊 张迪 张鹏辉 《全球能源互联网》 CSCD 北大核心 2024年第5期521-529,共9页
基于数据驱动的方法在电力系统暂态稳定评估的效率和精度提升上已经取得了一些研究成果。然而电力系统暂态过程中涉及多维度时序特征的变化,常规算法对特征的提取能力不足且缺乏可解释性,难以反映系统暂态过程中的动态行为。因此,构建... 基于数据驱动的方法在电力系统暂态稳定评估的效率和精度提升上已经取得了一些研究成果。然而电力系统暂态过程中涉及多维度时序特征的变化,常规算法对特征的提取能力不足且缺乏可解释性,难以反映系统暂态过程中的动态行为。因此,构建了一个具有双塔结构的Transformer模型,以Transformer编码器作为特征提取器,考虑同一时刻不同维度的特征以及每一维度特征在不同时间步对系统暂态稳定的影响,并将其分别作为双塔结构Transformer模型的输入,训练和学习各特征通道和时间步对系统暂态稳定性的影响。通过融合机制,建立了由系统特征到系统稳定性的端到端的映射模型,实现了暂态稳定高精度的评估,并通过注意力热图可视化解释模型的决策过程。最后,在IEEE-39节点系统验证了所提方法的有效性。 展开更多
关键词 电力系统 暂态稳定评估 Transformer模型 注意力机制
在线阅读 下载PDF
针对样本类不平衡的深度残差网络电力系统暂态稳定评估方法 被引量:3
10
作者 刘颂凯 党喜 +3 位作者 崔梓琪 杨超 阮肇华 袁铭洋 《智慧电力》 北大核心 2024年第1期116-123,共8页
系统的量测数据可能受到噪声以及样本类分布不平衡问题的影响,导致基于数据驱动的暂态稳定评估模型性能下降。提出一种针对样本类不平衡的的深度残差网络电力系统暂态稳定评估方法。首先,利用改进过采样技术为滤除噪声的少数类样本构造... 系统的量测数据可能受到噪声以及样本类分布不平衡问题的影响,导致基于数据驱动的暂态稳定评估模型性能下降。提出一种针对样本类不平衡的的深度残差网络电力系统暂态稳定评估方法。首先,利用改进过采样技术为滤除噪声的少数类样本构造所需的新样本,改善样本类不平衡问题,并减少噪声的影响;然后,基于深度残差网络构建电力系统暂态稳定评估模型,解决梯度消失导致的模型性能退化问题,提高模型的鲁棒性和准确性;最后,在新英格兰10机39节点和47机140节点系统上的仿真结果表明,所提方法能减小噪声干扰、降低不平衡数据集所带来的影响和减少计算复杂度。 展开更多
关键词 暂态稳定评估 噪声问题 样本类分布不平衡 改进合成少数过采样技术 深度残差网络
在线阅读 下载PDF
数据驱动的电力系统暂态稳定评估方法综述 被引量:7
11
作者 范士雄 赵泽宁 +3 位作者 郭剑波 马士聪 王铁柱 李东琦 《中国电机工程学报》 EI CSCD 北大核心 2024年第9期3408-3428,I0006,共22页
快速、准确地识别电力系统暂态稳定态势,是保证大电网安全稳定运行的重要前提。相较于传统物理解析方法,基于数据驱动的电力系统暂态稳定评估技术在解决复杂非线性映射和快速评估方面具有较大的优势,已成为目前电力系统暂态稳定评估技... 快速、准确地识别电力系统暂态稳定态势,是保证大电网安全稳定运行的重要前提。相较于传统物理解析方法,基于数据驱动的电力系统暂态稳定评估技术在解决复杂非线性映射和快速评估方面具有较大的优势,已成为目前电力系统暂态稳定评估技术研究的重要方向。该文首先结合电力系统暂态稳定评估场景需求和通用智能应用框架建立基于数据驱动的暂态稳定评估技术的基本架构,从离线训练、在线应用和反馈更新的维度分析数据驱动下各个流程环节的功能;其次,围绕着数据增强、机器学习算法和学习机制3个方面针对数据驱动技术在电网暂态稳定评估中的应用研究工作进展以及关键技术进行综述,分析不同模型和方法在解决电力系统暂态稳定评估的数据拟合和泛化能力的优势和不足。最后,结合高比例新能源电力系统暂态稳定评估新特点和当前人工智能技术的发展,从数据、模型和应用3个方面对电力系统暂态稳定评估技术的研究方向进行展望,为电网暂态稳定评估数字化和智能化提供技术参考。 展开更多
关键词 电力系统 暂态稳定评估 人工智能 数据驱动 主动学习 迁移学习
在线阅读 下载PDF
基于Powershap特征选择的电力系统暂态稳定评估
12
作者 陈超 余成波 左立昕 《热力发电》 CAS CSCD 北大核心 2024年第8期143-151,共9页
为进一步提高暂态稳定评估(transient stability assessment,TSA)的精准度和可靠性,提出一种基于统计学与Shapley值结合的特征选择方法(Powershap),并建立电力系统TSA模型。首先,根据电力系统运行时的稳态分量构建输入特征集,采用Powers... 为进一步提高暂态稳定评估(transient stability assessment,TSA)的精准度和可靠性,提出一种基于统计学与Shapley值结合的特征选择方法(Powershap),并建立电力系统TSA模型。首先,根据电力系统运行时的稳态分量构建输入特征集,采用Powershap将数据集分为多个数据子集进行训练,筛选出关键特征集;其次,利用关键特征集训练多个CatBoost模型并进行TSA,生成TSA模型;最后,在新英格兰10机39节点系统和加入新能源发电的新英格兰54机118节点系统上进行仿真实验,并给出评估结果。实验得出:在新英格兰10机39节点系统中采用基于Powershap特征选择的方法进行分类,其准确率能够达到99.79%;在改进的新英格兰54机118节点系统上,其准确率能够达到99.49%,说明该方法能够有效进行电力系统暂态稳定评估,并且验证了所提TSA模型具有较好的鲁棒性与泛化能力。 展开更多
关键词 电力系统 暂态稳定评估 特征选择 Powershap CatBoost
在线阅读 下载PDF
多输入特征融合的组合支持向量机电力系统暂态稳定评估 被引量:139
13
作者 马骞 杨以涵 +2 位作者 刘文颖 齐郑 郭金智 《中国电机工程学报》 EI CSCD 北大核心 2005年第6期17-23,共7页
利用支持向量机(SVM)方法进行暂态稳定判别时,输入特征的选择是影响最终结果的最重要因素。传统启发式和试探式方法不能从根本上解决输入特征选择的问题。本文利用信息融合思想,在构造的具有不同输入特征的多组子分类器的基础上,对子分... 利用支持向量机(SVM)方法进行暂态稳定判别时,输入特征的选择是影响最终结果的最重要因素。传统启发式和试探式方法不能从根本上解决输入特征选择的问题。本文利用信息融合思想,在构造的具有不同输入特征的多组子分类器的基础上,对子分类器的结果在输出空间再进行信息融合,以提高分类准确率。文中从不同角度启发式的构造了 4,构成四组弱分类器。以这四组弱分类器为子分类器,再构造一个融合 SVM 对几种子分类器的结果以回归方式进行融合,作为最终判别结果。IEEE 39-BUS 和IEEE145-BUS 测试系统上进行的仿真表明,弱分类器的分类性能经过融合得到明显强化,融合后的结果比任何一种子分类器的结果以及一次包含所有输入特征的结果都更准确。该方法为在线快速进行暂态稳定计算提供了一条重要途径。 展开更多
关键词 暂态稳定评估 电力系统 特征融合 支持向量机(SVM) 多输入 输入特征 组合 暂态稳定计算 信息融合 分类器 特征选择 测试系统 启发式 构造 准确率 判别 种子
在线阅读 下载PDF
基于多支持向量机综合的电力系统暂态稳定评估 被引量:116
14
作者 戴远航 陈磊 +2 位作者 张玮灵 闵勇 李文锋 《中国电机工程学报》 EI CSCD 北大核心 2016年第5期1173-1180,共8页
目前,利用数据挖掘方法进行电力系统暂态稳定评估的研究,对结果中不稳定样本被误判为稳定样本的情况重视不足,不符合电网运行对安全性的要求。针对该问题,文中提出了安全域概念下基于多支持向量机综合的电力系统暂态稳定评估方法。该方... 目前,利用数据挖掘方法进行电力系统暂态稳定评估的研究,对结果中不稳定样本被误判为稳定样本的情况重视不足,不符合电网运行对安全性的要求。针对该问题,文中提出了安全域概念下基于多支持向量机综合的电力系统暂态稳定评估方法。该方法首先利用网格法对支持向量机进行参数寻优,然后选取分类准确率高的若干组支持向量机参数,在这些参数下训练支持向量机,最后对训练得到的支持向量机进行综合,实现电力系统暂态稳定评估。对仿真系统的分析表明,文中提出的方法能够充分利用不同参数的支持向量机提供的有用信息,大量减少"误判稳定"样本的个数,可以对应用数据挖掘理论进行电力系统暂态稳定评估的实际应用提供有益的参考。 展开更多
关键词 电力系统 数据挖掘 暂态稳定评估 支持向量机
在线阅读 下载PDF
基于代价敏感极端学习机的电力系统暂态稳定评估方法 被引量:23
15
作者 陈振 肖先勇 +2 位作者 李长松 张殷 胡清泉 《电力自动化设备》 EI CSCD 北大核心 2016年第2期118-123,共6页
针对电力系统暂态稳定评估中稳定样本与不稳定样本误分类代价不同的特点,提出一种基于代价敏感极端学习机的电力系统暂态稳定评估方法。该方法在现有极端学习机的基础上,引入误分类代价的概念,以误分类代价最小为目标,构造代价敏感极端... 针对电力系统暂态稳定评估中稳定样本与不稳定样本误分类代价不同的特点,提出一种基于代价敏感极端学习机的电力系统暂态稳定评估方法。该方法在现有极端学习机的基础上,引入误分类代价的概念,以误分类代价最小为目标,构造代价敏感极端学习机,克服了现有极端学习机应用于暂态稳定评估时只追求高的分类准确率而忽略不稳定样本漏报率的缺点。新英格兰39节点系统和IEEE 145节点系统的仿真结果表明,所提方法的评估结果更倾向于将样本划分为误分类代价大的不稳定样本,以减小总的误分类代价。通过调整误分类代价矩阵,不仅可以使漏报率降为0,还能使稳定样本的误报率维持在较低的水平,保证了评估结果的可靠性。 展开更多
关键词 电力系统 暂态稳定 评估 极端学习机 误分类代价 漏报率 稳定
在线阅读 下载PDF
基于统计学习理论的电力系统暂态稳定评估 被引量:71
16
作者 许涛 贺仁睦 +1 位作者 王鹏 徐东杰 《中国电机工程学报》 EI CSCD 北大核心 2003年第11期51-55,共5页
该文利用基于结构风险最小化原理的支持向量机,结合装袋和近似推理,提出了电力系统暂态稳定评估模型的构造方法。该方法充分发挥支持向量机在解决有限样本、非线性及高维识别中体现出的优势,有效地提高了暂稳评估模型的泛化能力,并通过... 该文利用基于结构风险最小化原理的支持向量机,结合装袋和近似推理,提出了电力系统暂态稳定评估模型的构造方法。该方法充分发挥支持向量机在解决有限样本、非线性及高维识别中体现出的优势,有效地提高了暂稳评估模型的泛化能力,并通过训练样本集重构解决了暂稳评估的多类识别问题,在该评估模型中利用样本规范化、装袋和近似推理提高了训练速度和预测结果的精度及稳定性。在IEEE39节点测试系统中的应用结果证明了该方法对暂态稳定评估的有效性。 展开更多
关键词 电力系统 暂态稳定评估 统计学习理论 支持向量机 人工智能 神经网络
在线阅读 下载PDF
基于支持向量机综合分类模型和关键样本集的电力系统暂态稳定评估 被引量:42
17
作者 田芳 周孝信 于之虹 《电力系统保护与控制》 EI CSCD 北大核心 2017年第22期1-8,共8页
为了提高支持向量机(Support Vector Machine,SVM)的分类性能,提出了根据关键样本集构造的SVM综合分类模型进行电力系统暂态稳定评估的方法。给出了基于不同特征量的SVM综合分类模型的构建方法、关键样本集的产生方法以及基于综合分类... 为了提高支持向量机(Support Vector Machine,SVM)的分类性能,提出了根据关键样本集构造的SVM综合分类模型进行电力系统暂态稳定评估的方法。给出了基于不同特征量的SVM综合分类模型的构建方法、关键样本集的产生方法以及基于综合分类模型和关键样本集的SVM分类步骤。采用3机9节点典型算例和某省级电网算例进行分类效果分析。分析结果表明,所提出的基于SVM综合分类模型和关键样本集的方法,相较于传统SVM方法,大幅度减少了将不稳定样本判定为稳定的漏分类数,提高了SVM方法的实用性。所提出的基于关键样本集构造分类模型的思路对于其他数据挖掘方法也有一定的借鉴意义。 展开更多
关键词 支持向量机 综合分类模型 关键样本集 电力系统 暂态稳定评估
在线阅读 下载PDF
基于投影能量函数和Pin-SVM的电力系统暂态稳定评估 被引量:23
18
作者 陈厚合 王长江 +2 位作者 姜涛 李雪 李国庆 《电工技术学报》 EI CSCD 北大核心 2017年第11期67-76,共10页
提出一种基于Pin-SVM的电力系统暂态稳定评估方法。首先,采用系统指标(如平均机械功率、初始加速度和系统冲击等)和投影能量函数指标(如投影角速度、投影角加速度和投影动能PKE)构建暂态稳定指标的原始特征集,通过最大相关最小冗余特征... 提出一种基于Pin-SVM的电力系统暂态稳定评估方法。首先,采用系统指标(如平均机械功率、初始加速度和系统冲击等)和投影能量函数指标(如投影角速度、投影角加速度和投影动能PKE)构建暂态稳定指标的原始特征集,通过最大相关最小冗余特征选择方法对暂态指标集进行特征压缩,寻找对电网暂态变化敏感度高的特征子集;然后,基于Pin-SVM思想将特征子集映射到高维空间,实现非线性暂态稳定评估问题的线性转换,进而引入分位数改变系统稳定类与不稳定类之间的最近点位置,将暂态稳定分类问题转换为在Pin-SVM中寻找最优分位数距离问题,以减小边界干扰样本的影响,提高电力系统暂态评估方法的评估准确率和稳定性。最后,以IEEE-39节点系统、IEEE-145节点系统和某实际算例进行仿真计算,计算结果验证了该方法的有效性和准确性。 展开更多
关键词 投影能量函数 Pin-SVM 广域测量系统 暂态稳定评估
在线阅读 下载PDF
基于受扰严重机组特征及机器学习方法的电力系统暂态稳定评估 被引量:44
19
作者 叶圣永 王晓茹 +1 位作者 刘志刚 钱清泉 《中国电机工程学报》 EI CSCD 北大核心 2011年第1期46-51,共6页
理论和仿真研究表明,依靠少量受扰严重机组的动态特征能够有效地判别大电网的暂态稳定性。提出一种组合搜索严重受扰机组,并据此构造稳定评估原始输入特征的方法。进一步利用主成分分析法降低特征维数,构成机器学习评估模型的输入特征... 理论和仿真研究表明,依靠少量受扰严重机组的动态特征能够有效地判别大电网的暂态稳定性。提出一种组合搜索严重受扰机组,并据此构造稳定评估原始输入特征的方法。进一步利用主成分分析法降低特征维数,构成机器学习评估模型的输入特征。在新英格兰39节点测试系统和IEEE 50机测试系统上,利用所提方法仿真实现了决策树、支持向量机和k最近邻法等暂态稳定评估模型,结果表明所提出的构建电力系统暂态稳定评估输入特征方法有效,有助于改变原始特征构建的主观和随意性。 展开更多
关键词 暂态稳定评估 机器学习 支持向量机 随机森林 主成分分析法
在线阅读 下载PDF
基于支持向量机增量学习的电力系统暂态稳定评估 被引量:27
20
作者 叶圣永 王晓茹 +1 位作者 刘志刚 钱清泉 《电力系统自动化》 EI CSCD 北大核心 2011年第11期15-19,共5页
基于传统支持向量机的暂态稳定评估模型,通常将所有的学习样本同时参与学习,如果有新样本加入,则需要对所有样本重新学习。针对传统暂态稳定评估模型不能在线更新的不足,提出了一种支持向量机增量学习的暂态稳定评估方法。该方法利用一... 基于传统支持向量机的暂态稳定评估模型,通常将所有的学习样本同时参与学习,如果有新样本加入,则需要对所有样本重新学习。针对传统暂态稳定评估模型不能在线更新的不足,提出了一种支持向量机增量学习的暂态稳定评估方法。该方法利用一种快速支持向量机增量学习方法,构造递归解法将新数据增加到解中,并对模型更新前的训练数据保持Karush-Kuhn-Tucker条件。通过一次1个样本的增量学习更新暂态稳定评估模型。新英格兰39节点测试系统的仿真实验表明:所提出的方法能有效更新评估模型且大幅减少学习时间,为基于机器学习的电力系统暂态稳定在线学习提供了新思路。 展开更多
关键词 暂态稳定评估 机器学习 支持向量机 特征选择 增量学习
在线阅读 下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部