Solid oxide fuel cell (SOFC) has been identified as an effective and clean alternative choice for marine power system.This paper emphasizes on the dynamic modeling of SOFC power system and its performance based upon m...Solid oxide fuel cell (SOFC) has been identified as an effective and clean alternative choice for marine power system.This paper emphasizes on the dynamic modeling of SOFC power system and its performance based upon marine operating circumstance.A SOFC power system model has been provided considering thermodynamic and electrochemical reaction mechanism.Subcomponents of lithium ion battery, power conditioning unit, stack structure and controller are integrated in the model.The dynamic response of the system is identified according to the inertia of its subcomponent and controller.Validation of the whole system simulation at steady state and transit period are presented, concerning the effects of thermo inertia, control strategy and seagoing environment.The simulation results show reasonable accuracy compare with lab test.The models can be used to predict performance of a SOFC power system and identify the system response when part of the component parameter is adjusted.展开更多
Reconfigurability of the electrical network in a shipboard power system (SPS) after its failure is central to the restoration of power supply and improves survivability of an SPS. The navigational process creates a ...Reconfigurability of the electrical network in a shipboard power system (SPS) after its failure is central to the restoration of power supply and improves survivability of an SPS. The navigational process creates a sequence of different operating conditions. The priority of some loads differs in changing operating conditions. After analyzing characteristics of typical SPS, a model was developed used a grade III switchboard and an environmental prioritizing agent (EPA) algorithm. This algorithm was chosen as it is logically and physically decentralized as well as multi-agent oriented. The EPA algorithm was used to decide on the dynamic load priority, then it selected the means to best meet the maximum power supply load. The simulation results showed that higher priority loads were the first to be restored. The system satisfied all necessary constraints, demonstrating the effectiveness and validity of the proposed method.展开更多
文摘Solid oxide fuel cell (SOFC) has been identified as an effective and clean alternative choice for marine power system.This paper emphasizes on the dynamic modeling of SOFC power system and its performance based upon marine operating circumstance.A SOFC power system model has been provided considering thermodynamic and electrochemical reaction mechanism.Subcomponents of lithium ion battery, power conditioning unit, stack structure and controller are integrated in the model.The dynamic response of the system is identified according to the inertia of its subcomponent and controller.Validation of the whole system simulation at steady state and transit period are presented, concerning the effects of thermo inertia, control strategy and seagoing environment.The simulation results show reasonable accuracy compare with lab test.The models can be used to predict performance of a SOFC power system and identify the system response when part of the component parameter is adjusted.
基金Supported by the National Natural Science Foundation of China under Grant No.60704004the Fundamental Research Funds for the Central University under Grant No.HEUCFT1005
文摘Reconfigurability of the electrical network in a shipboard power system (SPS) after its failure is central to the restoration of power supply and improves survivability of an SPS. The navigational process creates a sequence of different operating conditions. The priority of some loads differs in changing operating conditions. After analyzing characteristics of typical SPS, a model was developed used a grade III switchboard and an environmental prioritizing agent (EPA) algorithm. This algorithm was chosen as it is logically and physically decentralized as well as multi-agent oriented. The EPA algorithm was used to decide on the dynamic load priority, then it selected the means to best meet the maximum power supply load. The simulation results showed that higher priority loads were the first to be restored. The system satisfied all necessary constraints, demonstrating the effectiveness and validity of the proposed method.