期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的电力设备缺陷文本分类模型研究 被引量:115
1
作者 刘梓权 王慧芳 +1 位作者 曹靖 邱剑 《电网技术》 EI CSCD 北大核心 2018年第2期644-650,共7页
电网生产管理系统中存在大量闲置的设备缺陷记录文本。针对电力设备缺陷文本的特点,构建了基于卷积神经网络的缺陷文本分类模型。首先通过分析大量电力设备缺陷记录,归纳了电力设备缺陷文本的特点;然后参考中文文本分类的一般流程,并考... 电网生产管理系统中存在大量闲置的设备缺陷记录文本。针对电力设备缺陷文本的特点,构建了基于卷积神经网络的缺陷文本分类模型。首先通过分析大量电力设备缺陷记录,归纳了电力设备缺陷文本的特点;然后参考中文文本分类的一般流程,并考虑缺陷文本的特点,建立了一种基于卷积神经网络的电力缺陷文本分类模型;最后通过算例对基于卷积神经网络的缺陷分类模型和多种传统机器学习分类模型进行全面比较。算例结果表明,所提出的缺陷文本分类模型能显著降低分类错误率,在分类效率上也比较可观。 展开更多
关键词 电力文本处理 缺陷分类 卷积神经网络 机器学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部