期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
西安地铁车辆轮对踏面异常磨耗原因及解决措施 被引量:5
1
作者 付建鹏 刘锡顺 田树坤 《铁道机车车辆》 北大核心 2019年第3期104-109,共6页
地铁车辆轮对踏面的异常磨耗,是困扰许多车辆运营部门的一个难题。轮对踏面异常磨耗也分为凹形磨耗、W形磨耗以及梯形磨耗等多种不同形状,主要与轮对在轨道上运行时踏面与轨道间摩擦以及制动时闸瓦和轮对踏面的摩擦有关。针对西安地铁... 地铁车辆轮对踏面的异常磨耗,是困扰许多车辆运营部门的一个难题。轮对踏面异常磨耗也分为凹形磨耗、W形磨耗以及梯形磨耗等多种不同形状,主要与轮对在轨道上运行时踏面与轨道间摩擦以及制动时闸瓦和轮对踏面的摩擦有关。针对西安地铁一号线发生的车辆轮对踏面梯形磨耗进行的调查分析,指出了产生异常磨耗的原因,提出了一种解决踏面异常磨耗的方案。 展开更多
关键词 异常磨耗 轮对踏面 电制动能力 制动响应特性 -空配合方案
在线阅读 下载PDF
Supervisory control of the hybrid off-highway vehicle for fuel economy improvement using predictive double Q-learning with backup models 被引量:1
2
作者 SHUAI Bin LI Yan-fei +2 位作者 ZHOU Quan XU Hong-ming SHUAI Shi-jin 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2266-2278,共13页
This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimi... This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimize the engine fuel in real-world driving and improve energy efficiency with a faster and more robust learning process.Unlike the existing“model-free”methods,which solely follow on-policy and off-policy to update knowledge bases(Q-tables),the PDQL is developed with the capability to merge both on-policy and off-policy learning by introducing a backup model(Q-table).Experimental evaluations are conducted based on software-in-the-loop(SiL)and hardware-in-the-loop(HiL)test platforms based on real-time modelling of the studied vehicle.Compared to the standard double Q-learning(SDQL),the PDQL only needs half of the learning iterations to achieve better energy efficiency than the SDQL at the end learning process.In the SiL under 35 rounds of learning,the results show that the PDQL can improve the vehicle energy efficiency by 1.75%higher than SDQL.By implementing the PDQL in HiL under four predefined real-world conditions,the PDQL can robustly save more than 5.03%energy than the SDQL scheme. 展开更多
关键词 supervisory charge-sustaining control hybrid electric vehicle reinforcement learning predictive double Q-learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部