期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Hilbert和CA-VMD的风电机组叶轮不平衡故障电信号特征提取方法 被引量:9
1
作者 党建 魏晋源 +1 位作者 贾嵘 李骥 《电网与清洁能源》 北大核心 2021年第1期112-118,126,共8页
针对风电机组叶轮系统故障的非线性、非稳定性和耦合性使早期微弱故障特征频率处于强背景噪声下难以提取的问题,并考虑到传统故障信号采集方法存在的局限性,从电信号入手,提出了一种基于希尔伯特变换和变分模态分解相关性分析(CA-VMD)... 针对风电机组叶轮系统故障的非线性、非稳定性和耦合性使早期微弱故障特征频率处于强背景噪声下难以提取的问题,并考虑到传统故障信号采集方法存在的局限性,从电信号入手,提出了一种基于希尔伯特变换和变分模态分解相关性分析(CA-VMD)的风电机组叶轮系统不平衡故障的电信号特征提取方法。首先,针对传统频域分析方法直接对故障电信号进行分析而无法提取故障特征频率的问题,引入Hilbert变换解调出故障调制信号;然后,针对强背景噪声下早期微弱故障特征难提取的问题,引入变分模态分解将故障调制信号分解,并通过相关性分析剔除噪声分量;最后,重构故障调制信号并提取故障特征频率,提高了原始故障信号的信噪比。通过仿真分析,证明了所提方法的有效性。 展开更多
关键词 风电机组 叶轮系统不平衡故障 电信号特征提取 希尔伯特变换 变分模态分解 相关性分析
在线阅读 下载PDF
基于贝塞尔曲线拟合的心电信号模式分类方法 被引量:3
2
作者 石屹 金登男 《计算机工程与设计》 CSCD 北大核心 2013年第4期1437-1441,共5页
提出了一种以心电信号形态特征为基础,基于信号分段特征提取,结合三阶贝塞尔函数和自组织神经网络的心电信号分类方法。首先分析了心电信号的形态特点,讨论了心电信号的分段方法,重点研究了结合贝塞尔函数的心电信号特征提取方法。最后... 提出了一种以心电信号形态特征为基础,基于信号分段特征提取,结合三阶贝塞尔函数和自组织神经网络的心电信号分类方法。首先分析了心电信号的形态特点,讨论了心电信号的分段方法,重点研究了结合贝塞尔函数的心电信号特征提取方法。最后,应用自组织神经网络对心电信号特征机型分类验证,结合使用MIT-BIH心电信号数据库的112605条数据进行实验。使用贝塞尔函数可以达到很好的特征提取效果,结合自组织神经网络可以达到较好的分类效果。实验结果表明,特征提取方法能够提高特征的有效性以及分类器的准确率。 展开更多
关键词 电信号分类 形态特征 电信号特征提取 贝塞尔曲线 自组织神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部