The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred s...The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.展开更多
Graphite oxide(GO) was prepared by the pressurized oxidation method and incorporated into polyimide(PI) matrix to fabricate high-k composite films by in-situ polymerization and subsequent thermal treatment. The result...Graphite oxide(GO) was prepared by the pressurized oxidation method and incorporated into polyimide(PI) matrix to fabricate high-k composite films by in-situ polymerization and subsequent thermal treatment. The results show that the as-prepared GO had good dispersion and compatibility in PI matrix due to the introduction of abundant oxygen-containing functional groups during the oxidation. The residual graphitic domains and the thermal treatment induced reduction of GO further enhanced the dielectric permittivity of the resulting GO–PI composites. The dielectric permittivity of the GO–PI composites exhibited a typical percolation behavior with a percolation threshold of 0.0347 of volume ratio and a critical exponent of 0.837. Near the percolation threshold, the dielectric permittivity of the GO–PI composite increased to 108 at 10~2 Hz and was 26 times that of the pure PI.展开更多
The first-principles calculations were performed to investigate the electronic structure, magnetic and dielectric properties of Cr-doped Fe_3C, in comparison to those of pure Fe_3C and Cr_3C. The obtained results show...The first-principles calculations were performed to investigate the electronic structure, magnetic and dielectric properties of Cr-doped Fe_3C, in comparison to those of pure Fe_3C and Cr_3C. The obtained results show that the thermodynamic stability of Crdoped Fe_3C becomes weaker in terms of the larger formation enthalpy, on the contrary, the metallicity and covalency are found to strengthen to some extent. The magnetic moments of Fe_3C, Fe_(11)CrC_4(g), and Fe_(11)CrC_4(s) are respectively 21.36 μB/cell, 16.92 μB/cell, and 17.62 μB/cell, and in Fe_(11)CrC4(g) and Fe_(11)CrC_4(s), the Fe of Wyckoff positions of 8d and 4c is substituted by Cr. The local magnetic moment of Cr at 8d site is larger than that at 4c site in the doped structure, which is opposite to that of Fe. In low frequency band, the permittivity follows the ranking of Fe_(11)Cr C_4(s)>Cr_3C>Fe_(11)Cr C_4(g)>Fe_3C. Once exceeding a certain frequency, the sequence will be broken. Besides the electron transition, the polarization of atoms also makes a contribution to the dielectric properties.展开更多
Left-hand materials have drawn increasing attention from many disciplines and found widespread application, especially in microwave engineering. A sandwiched metamaterial consisting of multi-nested square-split-ring r...Left-hand materials have drawn increasing attention from many disciplines and found widespread application, especially in microwave engineering. A sandwiched metamaterial consisting of multi-nested square-split-ring resonators on the top side and a set of wires on the back side is proposed. Scattering parameters are retrieved by high-frequency structure simulator(HFSS) software based on the finite element method. Effects of square-split-ring number on the left-hand characteristics containing negative values of permittivity, permeability, and refractive index have been intensively investigated. Simulated results show that obvious resonant left-hand characteristics could be observed within 8-18 GHz, and the resonant frequency counts are inclined to be in direct proportion to the square-split-ring number over 8-18 GHz. Besides, the proposed sandwiched metamaterial with three square-split-ring resonators and three wires presents the widest frequency band of left-hand characteristics in a range of 8-18 GHz. Further, electromagnetic field distributions demonstrated that the induced magnetic dipole dominates the resonant absorption. The multi-peak resonance characteristics of square-split-ring resonant structure are considered to be a promising candidate for selective-frequency absorption or modulation toward microwave frequency band.展开更多
The structural and electrical properties of lead free Srx-xLax(Tio.sFeo.5)O3 (SLTFO) prepared by standard solid state reaction technique were studied. The X-ray diffraction analysis confirmed the formation of a si...The structural and electrical properties of lead free Srx-xLax(Tio.sFeo.5)O3 (SLTFO) prepared by standard solid state reaction technique were studied. The X-ray diffraction analysis confirmed the formation of a single-phase cubic perovskite structure. The compositional dependence of lattice constant, density and microstructural studies show that they vary significantly with La3+ content. When measured at 10 kHz, all the compositions of SLTFO at room temperature exhibit a high permittivity (about 104) and low dielectric loss (about 10-3). SLTFO also display minimum dielectric loss within the lower and higher limits of frequency, indicating that the samples are of good quality. It is concluded from the calculated ac conductivity that the conduction is due to mixed polarons hopping. The complex impedance plot exhibits a tendency of forming a single semicircular arc for all compositions, which implies a dominance of grain boundary resistance on the impedance. Impedance parameters were determined by fitting the experimental data with Cole-Cole empirical formula. The results of the present experiment indicate that the lead free SLTFO materials with higher permittivity and lower dielectric loss have possible practical applications.展开更多
The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification...The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification and discharge at the interface under certain condition. It is of significant importance to take an insight into the phenomenon occurring at the interface. Through experiment, the pressboard is found as a porous material. The interface changes abruptly from bulk pressboard to the bulk oil as a result of the porous structure. A new model is proposed which divides the interface into bulk oil region, transition region, and bulk pressboard region. The width of the transition region is decided according to the microtome figure. The effective permittivity of the transition region is calculated using a new model based on fractal theory. The model is validated and compared with previous calculation model. The effect of the existence of transition region on the electric field distribution is discussed.展开更多
Low dielectric constant materials/Cu interconnects integration technology provides the direction as well as the challenges in the fabrication of integrated circuits(IC) wafers during copper electrochemical-mechanical ...Low dielectric constant materials/Cu interconnects integration technology provides the direction as well as the challenges in the fabrication of integrated circuits(IC) wafers during copper electrochemical-mechanical polishing(ECMP). These challenges arise primarily from the mechanical fragility of such dielectrics, in which the undesirable scratches are prone to produce. To mitigate this problem, a new model is proposed to predict the initiation of scratching based on the mechanical properties of passive layer and copper substrate. In order to deduce the ratio of the passive layer yield strength to the substrate yield strength and the layer thickness, the limit analysis solution of surface scratch under Berkovich indenter is used to analyze the nano-scratch experimental measurements. The modulus of the passive layer can be calculated by the nano-indentation test combined with the FEM simulation. It is found that the film modulus is about 30% of the substrate modulus. Various regimes of scratching are delineated by FEM modeling and the results are verified by experimental data.展开更多
基金Project(KKSY201503006)supported by Scientific Research Foundation of Kunming University of Science and Technology,ChinaProject(2014FD009)supported by the Applied Basic Research Foundation(Youth Program)of ChinaProject(51090385)supported by the National Natural Science Foundation of China
文摘The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.
基金Project(2013JSJJ002)supported by the Faculty Research Fund of Central South University,China
文摘Graphite oxide(GO) was prepared by the pressurized oxidation method and incorporated into polyimide(PI) matrix to fabricate high-k composite films by in-situ polymerization and subsequent thermal treatment. The results show that the as-prepared GO had good dispersion and compatibility in PI matrix due to the introduction of abundant oxygen-containing functional groups during the oxidation. The residual graphitic domains and the thermal treatment induced reduction of GO further enhanced the dielectric permittivity of the resulting GO–PI composites. The dielectric permittivity of the GO–PI composites exhibited a typical percolation behavior with a percolation threshold of 0.0347 of volume ratio and a critical exponent of 0.837. Near the percolation threshold, the dielectric permittivity of the GO–PI composite increased to 108 at 10~2 Hz and was 26 times that of the pure PI.
基金Project(51174252)supported by the Joint Funds of the National Natural Science Foundation of China
文摘The first-principles calculations were performed to investigate the electronic structure, magnetic and dielectric properties of Cr-doped Fe_3C, in comparison to those of pure Fe_3C and Cr_3C. The obtained results show that the thermodynamic stability of Crdoped Fe_3C becomes weaker in terms of the larger formation enthalpy, on the contrary, the metallicity and covalency are found to strengthen to some extent. The magnetic moments of Fe_3C, Fe_(11)CrC_4(g), and Fe_(11)CrC_4(s) are respectively 21.36 μB/cell, 16.92 μB/cell, and 17.62 μB/cell, and in Fe_(11)CrC4(g) and Fe_(11)CrC_4(s), the Fe of Wyckoff positions of 8d and 4c is substituted by Cr. The local magnetic moment of Cr at 8d site is larger than that at 4c site in the doped structure, which is opposite to that of Fe. In low frequency band, the permittivity follows the ranking of Fe_(11)Cr C_4(s)>Cr_3C>Fe_(11)Cr C_4(g)>Fe_3C. Once exceeding a certain frequency, the sequence will be broken. Besides the electron transition, the polarization of atoms also makes a contribution to the dielectric properties.
基金Project(2017YFA0204600)supported by the National Key Research and Development Program of ChinaProject(51802352)supported by the National Natural Science Foundation of ChinaProject(2019JJ50768)supported by the Natural Science Foundation of Hunan Province of China。
文摘Left-hand materials have drawn increasing attention from many disciplines and found widespread application, especially in microwave engineering. A sandwiched metamaterial consisting of multi-nested square-split-ring resonators on the top side and a set of wires on the back side is proposed. Scattering parameters are retrieved by high-frequency structure simulator(HFSS) software based on the finite element method. Effects of square-split-ring number on the left-hand characteristics containing negative values of permittivity, permeability, and refractive index have been intensively investigated. Simulated results show that obvious resonant left-hand characteristics could be observed within 8-18 GHz, and the resonant frequency counts are inclined to be in direct proportion to the square-split-ring number over 8-18 GHz. Besides, the proposed sandwiched metamaterial with three square-split-ring resonators and three wires presents the widest frequency band of left-hand characteristics in a range of 8-18 GHz. Further, electromagnetic field distributions demonstrated that the induced magnetic dipole dominates the resonant absorption. The multi-peak resonance characteristics of square-split-ring resonant structure are considered to be a promising candidate for selective-frequency absorption or modulation toward microwave frequency band.
基金Project supported by CASR of Bangladesh University of Engineering and Technology(BUET)
文摘The structural and electrical properties of lead free Srx-xLax(Tio.sFeo.5)O3 (SLTFO) prepared by standard solid state reaction technique were studied. The X-ray diffraction analysis confirmed the formation of a single-phase cubic perovskite structure. The compositional dependence of lattice constant, density and microstructural studies show that they vary significantly with La3+ content. When measured at 10 kHz, all the compositions of SLTFO at room temperature exhibit a high permittivity (about 104) and low dielectric loss (about 10-3). SLTFO also display minimum dielectric loss within the lower and higher limits of frequency, indicating that the samples are of good quality. It is concluded from the calculated ac conductivity that the conduction is due to mixed polarons hopping. The complex impedance plot exhibits a tendency of forming a single semicircular arc for all compositions, which implies a dominance of grain boundary resistance on the impedance. Impedance parameters were determined by fitting the experimental data with Cole-Cole empirical formula. The results of the present experiment indicate that the lead free SLTFO materials with higher permittivity and lower dielectric loss have possible practical applications.
基金Project(2009CB724504)supported by the National Basic Research Program of China
文摘The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification and discharge at the interface under certain condition. It is of significant importance to take an insight into the phenomenon occurring at the interface. Through experiment, the pressboard is found as a porous material. The interface changes abruptly from bulk pressboard to the bulk oil as a result of the porous structure. A new model is proposed which divides the interface into bulk oil region, transition region, and bulk pressboard region. The width of the transition region is decided according to the microtome figure. The effective permittivity of the transition region is calculated using a new model based on fractal theory. The model is validated and compared with previous calculation model. The effect of the existence of transition region on the electric field distribution is discussed.
基金Project(50975058) supported by the National Natural Science Foundation of China
文摘Low dielectric constant materials/Cu interconnects integration technology provides the direction as well as the challenges in the fabrication of integrated circuits(IC) wafers during copper electrochemical-mechanical polishing(ECMP). These challenges arise primarily from the mechanical fragility of such dielectrics, in which the undesirable scratches are prone to produce. To mitigate this problem, a new model is proposed to predict the initiation of scratching based on the mechanical properties of passive layer and copper substrate. In order to deduce the ratio of the passive layer yield strength to the substrate yield strength and the layer thickness, the limit analysis solution of surface scratch under Berkovich indenter is used to analyze the nano-scratch experimental measurements. The modulus of the passive layer can be calculated by the nano-indentation test combined with the FEM simulation. It is found that the film modulus is about 30% of the substrate modulus. Various regimes of scratching are delineated by FEM modeling and the results are verified by experimental data.