针对快速扩展随机树(rapid-exploration random tree^(*),RRT^(*))算法在三维避障路径规划中存在盲目性、低效率和路径不光滑的问题,提出一种改进的RRT^(*)算法,以提高焊接机器人路径规划的性能。通过采用双向搜索策略,缩短搜索时间;结...针对快速扩展随机树(rapid-exploration random tree^(*),RRT^(*))算法在三维避障路径规划中存在盲目性、低效率和路径不光滑的问题,提出一种改进的RRT^(*)算法,以提高焊接机器人路径规划的性能。通过采用双向搜索策略,缩短搜索时间;结合人工势场(artificial potential field,APF)算法与RRT^(*)算法以提升路径平滑性并平衡局部优化与全局最优;提出一种基于角度与密度的改进APF算法策略,提高避障与路径引导效率;提出动态目标偏置策略和动态步长策略,以增强算法在障碍物密集和稀疏区域的自适应性及搜索效率;采用路径修剪策略缩短和平滑路径。最后,通过改进的RRT^(*)算法与RRT^(*)、APF-RRT^(*)、Bi-APF-RRT^(*)(bidirectional-APFRRT^(*))3种算法对比仿真实验以及真机实验,验证了改进算法的高效性和实用性。展开更多
文摘针对快速扩展随机树(rapid-exploration random tree^(*),RRT^(*))算法在三维避障路径规划中存在盲目性、低效率和路径不光滑的问题,提出一种改进的RRT^(*)算法,以提高焊接机器人路径规划的性能。通过采用双向搜索策略,缩短搜索时间;结合人工势场(artificial potential field,APF)算法与RRT^(*)算法以提升路径平滑性并平衡局部优化与全局最优;提出一种基于角度与密度的改进APF算法策略,提高避障与路径引导效率;提出动态目标偏置策略和动态步长策略,以增强算法在障碍物密集和稀疏区域的自适应性及搜索效率;采用路径修剪策略缩短和平滑路径。最后,通过改进的RRT^(*)算法与RRT^(*)、APF-RRT^(*)、Bi-APF-RRT^(*)(bidirectional-APFRRT^(*))3种算法对比仿真实验以及真机实验,验证了改进算法的高效性和实用性。