期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于t分布随机邻域嵌入算法的工业过程故障分类 被引量:4
1
作者 陶飞 苗爱敏 +2 位作者 李鹏 曹敏 李维 《南京理工大学学报》 EI CAS CSCD 北大核心 2020年第3期332-339,共8页
针对在工业过程中数据普遍存在的非线性特性,基于数据的局部相关关系对分类的影响,提出一种基于t分布随机邻域嵌入(t-SNE)的数据特征提取和故障分类方法。利用t-SNE算法非线性、非参数降维的优势,与费舍判别分析(FDA)、支持向量机(SVM)... 针对在工业过程中数据普遍存在的非线性特性,基于数据的局部相关关系对分类的影响,提出一种基于t分布随机邻域嵌入(t-SNE)的数据特征提取和故障分类方法。利用t-SNE算法非线性、非参数降维的优势,与费舍判别分析(FDA)、支持向量机(SVM)分类器相结合建立故障分类模型。利用t-SNE算法对故障数据进行非线性特征提取,获取数据的关键区分特征。用FDA和SVM算法实现故障分类和识别。通过田纳西-伊士曼(TE)过程获得的实验数据进行实验仿真分析,并分别与基于核主元分析法(KPCA)、拉普拉斯特征映射(LE)构建的KPCA-FDA、LE-FDA、KPCA-SVM、LE-SVM 4种故障分类模型进行比较。定量评估结果表明:即使基于不同分类器,相较于其他2种方法,该文方法的分类准确率分别提升了2%和7%,且其平均分类准确率能保持在97%以上。 展开更多
关键词 t分布随机邻域嵌入 工业过程 费舍判别分析 支持向量机 田纳西-伊士曼过程 核主元分析法 拉普拉斯特征映射
在线阅读 下载PDF
基于总体平均经验模态分解残差的故障诊断方法 被引量:3
2
作者 耿志强 王尊 +1 位作者 顾祥柏 林晓勇 《南京理工大学学报》 EI CAS CSCD 北大核心 2015年第3期293-300,共8页
为了提高化工过程故障诊断的效率,基于残差对故障状态具有敏感性以及经验模态分解(EMD)无需建模仅依据输入输出数据分析的优势,提出了一种基于总体平均经验模态分解(EEMD)残差进行故障诊断的新方法。基于历史数据的6σ控制图,确定残差... 为了提高化工过程故障诊断的效率,基于残差对故障状态具有敏感性以及经验模态分解(EMD)无需建模仅依据输入输出数据分析的优势,提出了一种基于总体平均经验模态分解(EEMD)残差进行故障诊断的新方法。基于历史数据的6σ控制图,确定残差的故障诊断控制限。利用在线实时数据采用贝叶斯信息准则在线确定EEMD的移动窗口。基于移动窗口的采样数据,在线获得EEMD残差最大值的变化,结合相应的故障诊断控制限在线诊断故障并确定故障发生时间及原因。该文方法与传统的希尔伯特谱分析方法相比,具有可在线诊断故障的优势,提高了故障诊断的准确率。将该文方法用于田纳西-伊士曼(TE)过程的故障在线诊断,验证了其有效性。 展开更多
关键词 总体平均经验模态分解 残差 故障诊断 贝叶斯信息准则 希尔伯特谱 田纳西-伊士曼过程
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部