期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
基于优化概率神经网络的化工过程故障诊断
1
作者 庞智敏 王亚君 富斯源 《化学工程》 北大核心 2025年第3期89-94,共6页
为了保证化工生产过程安全稳定运行,对生产过程进行实时故障检测变得尤为重要。传统的PNN(概率神经网络)故障诊断方法,由于需要根据经验选取平滑因子使得模型分类准确率降低。为提高PNN模型的分类正确率和诊断速度,提出一种基于MSIDBO(... 为了保证化工生产过程安全稳定运行,对生产过程进行实时故障检测变得尤为重要。传统的PNN(概率神经网络)故障诊断方法,由于需要根据经验选取平滑因子使得模型分类准确率降低。为提高PNN模型的分类正确率和诊断速度,提出一种基于MSIDBO(多策略改进蜣螂优化)算法的PNN化工过程故障诊断方法。将提出的方法在田纳西-伊斯曼上进行仿真实验,并与PNN、DBO-PNN(蜣螂优化的概率神经网络)和SSA-PNN(麻雀搜索算法优化的概率神经网络)进行比较,结果表明文中提出的方法在准确率和运行速度上均有显著优势。 展开更多
关键词 故障诊断 多策略改进蜣螂算法 概率神经网络 田纳西-伊斯曼过程
在线阅读 下载PDF
基于AOA优化SVM的工业过程故障检测 被引量:8
2
作者 李鑫妮 王亚君 许晓婷 《现代化工》 CAS CSCD 北大核心 2024年第S02期343-347,354,共6页
为了提高工业生产过程故障检测的精度,保证产品的质量和生产过程的安全,提出了一种基于算术优化算法(arithmetic optimization algorithm,AOA)优化支持向量机(support vector machine,SVM)的故障检测方法。首先,对工业过程中产生的数据... 为了提高工业生产过程故障检测的精度,保证产品的质量和生产过程的安全,提出了一种基于算术优化算法(arithmetic optimization algorithm,AOA)优化支持向量机(support vector machine,SVM)的故障检测方法。首先,对工业过程中产生的数据进行标准化处理;然后,将处理后的数据作为训练样本建立SVM模型,同时采用算术优化算法对支持向量机中的惩罚参数C和核函数参数g进行优化,通过多次迭代对模型进行训练,建立最佳故障检测模型;最后,将测试数据导入建立的故障检测模型中进行故障检测。将提出的AOA-SVM方法应用于田纳西-伊斯曼过程进行实验验证,并与传统SVM、灰狼优化算法优化的支持向量机(GWO-SVM)方法进行比较,该研究提出的模型具有更高的准确率。实验仿真结果表明,提出的AOA-SVM故障检测模型具有更好的表现。 展开更多
关键词 故障检测 算术优化算法 支持向量机 田纳西-伊斯曼过程
在线阅读 下载PDF
基于双向生成对抗网络的工业过程故障检测
3
作者 牟建鹏 刘文韬 熊伟丽 《智能系统学报》 CSCD 北大核心 2024年第5期1199-1208,共10页
标准双向生成对抗网络的模型结构由全连接层构成,在进行故障检测时仅使用单个样本的过程特征进行统计量构建。因此,提出了一种改进双向生成对抗网络的工业过程故障检测方法。该方法用降噪自编码器对样本进行预处理,构建重构误差作为双... 标准双向生成对抗网络的模型结构由全连接层构成,在进行故障检测时仅使用单个样本的过程特征进行统计量构建。因此,提出了一种改进双向生成对抗网络的工业过程故障检测方法。该方法用降噪自编码器对样本进行预处理,构建重构误差作为双向生成对抗网络的输入,以减少异常样本中正常信息对异常信息的淹没,增强模型对微小故障的检测能力;并将长短时编解码器引入双向生成对抗网络模型中,使得生成器在生成虚假样本的同时还可以关注当前时刻样本的过程特征和历史时刻样本间的关联性,增强了模型对时间序列数据的检测能力。将所提故障检测方法应用于田纳西伊斯曼过程和实际磨煤机工业过程,其在保证低误报率的同时,提升了报警率,并且具有良好的泛化性能。 展开更多
关键词 故障检测 生成对抗网络 长短时记忆网络 自编码器 重构误差 时间序列 田纳西伊斯曼过程 磨煤机过程
在线阅读 下载PDF
卷积神经网络多变量过程特征学习与故障诊断 被引量:16
4
作者 陈淑梅 余建波 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2020年第7期59-67,共9页
为提取复杂多变量过程的有效特征,提高故障诊断性能,提出一种基于卷积神经网络(convolutional neural network,CNN)特征学习的多变量过程故障诊断模型.将高维过程信号归一化处理转为图像信号,多层卷积滤波器与子采样滤波器交替构成的轻... 为提取复杂多变量过程的有效特征,提高故障诊断性能,提出一种基于卷积神经网络(convolutional neural network,CNN)特征学习的多变量过程故障诊断模型.将高维过程信号归一化处理转为图像信号,多层卷积滤波器与子采样滤波器交替构成的轻量级CNN网络通过多个卷积核与图像进行卷积,采用本地连接和权重共享,滤除过程噪声和干扰信息,从而获得过程数据的高层抽象化表达.通过Softmax层有监督的微调方式学习故障特征完成故障诊断.利用以田纳西过程为代表的多变量非线性过程验证了模型的有效性,与经典分类器和近几年流行的深度神经网络进行对比,结果表明:将高维过程信号转为图像信号输入CNN提高了多变量过程的故障诊断精度;通过t-SNE方法对模型提取的特征进行可视化分析,说明模型强大的特征提取能力;将模型提取的特征作为传统分类器的输入时,故障识别准确率显著提升,进一步说明有效的特征提取有利于提高故障诊断的准确度和可靠性;与无监督学习方式相比,模型通过标签能获取更有效、稳定和抽象化的数据特征. 展开更多
关键词 多变量过程 故障诊断 卷积神经网络 特征学习 田纳西过程
在线阅读 下载PDF
基于子空间混合相似度的过程监测与故障诊断 被引量:10
5
作者 杨英华 魏玉龙 +1 位作者 李召 秦树凯 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第4期935-941,共7页
针对现代工业过程多变量、过程数据通常同时包含高斯性和非高斯性分布的特点,提出了一种基于混合子空间的系统性能监控与故障诊断方法。首先使用小波去噪、PCA和ICA方法来进行过程检测,然后将基于PCA特征子空间距离相似度和基于ICA子空... 针对现代工业过程多变量、过程数据通常同时包含高斯性和非高斯性分布的特点,提出了一种基于混合子空间的系统性能监控与故障诊断方法。首先使用小波去噪、PCA和ICA方法来进行过程检测,然后将基于PCA特征子空间距离相似度和基于ICA子空间余弦相似度的方法结合,建立故障诊断库,计算混合相似度,确定各类故障的诊断阈值。最后对在线的数据进行监控,判断过程是否正常。当有故障发生时,利用混合子空间相似度确定故障类型。该方法可以充分利用过程数据中的高斯和非高斯信息。通过对Tennessee Eastman(TE)过程的仿真研究,验证了该方法的可行性与有效性,与变量贡献图方法相比可以更加有效地监测出故障原因。 展开更多
关键词 混合相似度 田纳西-伊斯曼过程 过程监测 故障诊断
在线阅读 下载PDF
基于最大信息系数和深度残差图卷积的工业过程故障诊断方法 被引量:6
6
作者 任佳 孙思宇 鲍克 《高校化学工程学报》 EI CAS CSCD 北大核心 2023年第1期111-119,共9页
针对工业数据非线性、时变性、时空特征耦合的特点,提出一种基于最大信息系数和残差图卷积网络的工业过程故障诊断算法(MIC-RGCN)。引入最大信息系数(MIC)挖掘变量之间的相关关系,将高维变量之间的相关信息转换为空间距离信息,构建相关... 针对工业数据非线性、时变性、时空特征耦合的特点,提出一种基于最大信息系数和残差图卷积网络的工业过程故障诊断算法(MIC-RGCN)。引入最大信息系数(MIC)挖掘变量之间的相关关系,将高维变量之间的相关信息转换为空间距离信息,构建相关性矩阵作为图卷积层的邻接矩阵输入;构建改进的深度残差图卷积网络(GCN)模型对数据的时空特征进行深度融合提取并精准分类。在田纳西-伊斯曼过程和三相流过程数据集上将该算法与4种典型机器学习和深度学习算法进行对比测试。实验结果表明,该算法有效地提升了故障诊断的准确率。 展开更多
关键词 故障诊断 最大信息系数 图卷积网络 田纳西-伊斯曼过程 三相流过程
在线阅读 下载PDF
基于模糊粗糙集和鲸鱼优化支持向量机的化工过程故障诊断 被引量:14
7
作者 李国友 杨梦琪 +2 位作者 杭丙鹏 李晨光 王维江 《振动与冲击》 EI CSCD 北大核心 2022年第2期177-184,共8页
针对化工过程复杂,故障数据量大、属性多,难以保证故障诊断准确率和速度的问题,提出了一种基于模糊粗糙集(fuzzy rough sets,FRS)和鲸鱼优化的支持向量机(support vector machine,SVM)的化工过程故障诊断方法。通过对化工过程历史数据分... 针对化工过程复杂,故障数据量大、属性多,难以保证故障诊断准确率和速度的问题,提出了一种基于模糊粗糙集(fuzzy rough sets,FRS)和鲸鱼优化的支持向量机(support vector machine,SVM)的化工过程故障诊断方法。通过对化工过程历史数据分析,判别故障类型。首先,利用模糊粗糙集对离散化后的过程数据进行特征选择,经过属性约简得出最小故障特征集合;然后,利用一种新型元启发式算法——鲸鱼优化算法(whale optimization algorithm,WOA),对支持向量机的参数进行优化,根据全局最佳适应度函数值,构建故障数据分类模型;最后,将属性约简后的数据集输入到鲸鱼优化的支持向量机故障分类模型中,实现化工过程的故障诊断。利用田纳西-伊斯曼(Tennessee Eastman,TE)过程对构建的FRS-WOA-SVM故障分类模型进行测试及比较。结果表明,该方法故障诊断准确率高、诊断速度快,可以有效地对化工过程中的故障做出诊断。 展开更多
关键词 故障诊断 鲸鱼优化算法(WOA) 模糊粗糙集(FRS) 支持向量机(SVM) 属性约简 田纳西-伊斯曼(TE)过程
在线阅读 下载PDF
样本重构多尺度孪生卷积网络的化工过程故障检测 被引量:5
8
作者 王翔 柯飂挺 任佳 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第11期181-188,共8页
基于数据驱动的故障检测已成为工业过程故障检测的重要手段,但其在实际应用时受限于过程历史数据的规模,往往难以取得令人满意的检测精度。针对这一问题,提出了一种样本空间重构策略,该策略基于随机采样构造同类、异类样本对,在扩充数... 基于数据驱动的故障检测已成为工业过程故障检测的重要手段,但其在实际应用时受限于过程历史数据的规模,往往难以取得令人满意的检测精度。针对这一问题,提出了一种样本空间重构策略,该策略基于随机采样构造同类、异类样本对,在扩充数据规模的同时,将复杂的分类建模问题转化为样本间的相似度对比问题,降低了任务的复杂度。在此基础上,引入并改进孪生卷积神经网络(Siamese CNN)结构,提出了一种基于多尺度孪生卷积神经网络(Multi-scale Siamese CNN)的化工过程故障检测方法。田纳西-伊斯曼(TE)过程数据测试结果表明,所提算法的平均故障检测准确率达到89.66%,相对于常规数据驱动的故障检测算法提高8%以上。 展开更多
关键词 过程系统 故障检测 样本重构 多尺度 孪生卷积神经网络 田纳西-伊斯曼过程
在线阅读 下载PDF
基于LTSA和联合指标的非高斯过程监控方法及应用 被引量:7
9
作者 杨正永 王昕 王振雷 《化工学报》 EI CAS CSCD 北大核心 2015年第4期1370-1379,共10页
很多实际工业过程数据都具有高维、非线性且不严格服从高斯分布等特点。为处理数据维数高且是高斯分布和非高斯分布的混合体等问题,实现高效的过程监控,提出了一种基于LTSA和联合指标的非高斯过程监控方法。首先采用局部切空间排列(LTSA... 很多实际工业过程数据都具有高维、非线性且不严格服从高斯分布等特点。为处理数据维数高且是高斯分布和非高斯分布的混合体等问题,实现高效的过程监控,提出了一种基于LTSA和联合指标的非高斯过程监控方法。首先采用局部切空间排列(LTSA)算法从正常样本数据中提取低维子流形以实现维数约减;然后基于非高斯-高斯两步策略建立统计模型并得到非高斯统计量和高斯统计量,再对其进行加权得到新的统计量以实现对过程的监控;最后将该方法应用于田纳西-伊斯曼标准测试平台和实际乙烯裂解炉的过程监控,说明了所提方法的有效性。 展开更多
关键词 算法 集成 系统工程 非线性 非高斯 联合指标 局部切空间排列算法 田纳西-伊斯曼过程
在线阅读 下载PDF
基于GLSAFIS的氟化工过程操作单元可靠性监测 被引量:2
10
作者 薛峰 李欣铜 +4 位作者 周琨 魏志强 葛晓霞 葛志强 宋凯 《化工学报》 EI CAS CSCD 北大核心 2021年第11期5696-5706,共11页
氟化工产物的剧毒特性,使得对于氟化工过程设备的运行可靠性监控异常重要。为此,提出了基于全局-局部结构分析的模糊推理系统(GLSAFIS)在线评估氟化工过程操作单元运行可靠性。依据氟化工工艺流程选取操作单元过程变量后,通过全局-局部... 氟化工产物的剧毒特性,使得对于氟化工过程设备的运行可靠性监控异常重要。为此,提出了基于全局-局部结构分析的模糊推理系统(GLSAFIS)在线评估氟化工过程操作单元运行可靠性。依据氟化工工艺流程选取操作单元过程变量后,通过全局-局部结构分析算法(GLSA)对操作单元过程变量进行全局-局部特征提取。这些低维的全局-局部特征代替原始变量作为模糊推理系统(FIS)的输入,不仅可以克服噪声的影响,降低对专家知识的依赖,同时可以通过特征空间的降维压缩,大大加速后续模糊推理系统的逻辑设计。最后模糊推理系统的实施,使得本方法可以对化工过程操作单元可靠性进行在线评估。国内某氟化工厂二氟一氯甲烷(R-22)生产过程的实际应用以及田纳西伊斯曼模拟过程的仿真结果均证实了所提方法可以准确地反映实际化工过程操作单元的运行状况,大大提高了对实际化工过程的安全监控力度。 展开更多
关键词 可靠性评估 全局-局部结构分析 模糊推理系统 氟化工过程 田纳西伊斯曼过程
在线阅读 下载PDF
基于t分布随机邻域嵌入算法的工业过程故障分类 被引量:4
11
作者 陶飞 苗爱敏 +2 位作者 李鹏 曹敏 李维 《南京理工大学学报》 EI CAS CSCD 北大核心 2020年第3期332-339,共8页
针对在工业过程中数据普遍存在的非线性特性,基于数据的局部相关关系对分类的影响,提出一种基于t分布随机邻域嵌入(t-SNE)的数据特征提取和故障分类方法。利用t-SNE算法非线性、非参数降维的优势,与费舍判别分析(FDA)、支持向量机(SVM)... 针对在工业过程中数据普遍存在的非线性特性,基于数据的局部相关关系对分类的影响,提出一种基于t分布随机邻域嵌入(t-SNE)的数据特征提取和故障分类方法。利用t-SNE算法非线性、非参数降维的优势,与费舍判别分析(FDA)、支持向量机(SVM)分类器相结合建立故障分类模型。利用t-SNE算法对故障数据进行非线性特征提取,获取数据的关键区分特征。用FDA和SVM算法实现故障分类和识别。通过田纳西-伊士曼(TE)过程获得的实验数据进行实验仿真分析,并分别与基于核主元分析法(KPCA)、拉普拉斯特征映射(LE)构建的KPCA-FDA、LE-FDA、KPCA-SVM、LE-SVM 4种故障分类模型进行比较。定量评估结果表明:即使基于不同分类器,相较于其他2种方法,该文方法的分类准确率分别提升了2%和7%,且其平均分类准确率能保持在97%以上。 展开更多
关键词 t分布随机邻域嵌入 工业过程 费舍判别分析 支持向量机 田纳西-伊士曼过程 核主元分析法 拉普拉斯特征映射
在线阅读 下载PDF
基于改进的DAEN在TE过程故障诊断中的应用研究 被引量:8
12
作者 张远绪 程换新 《电子测量技术》 2019年第11期56-60,共5页
现代化工生产过程中故障情况十分复杂,具有非线性、多种类、少标签问题,传统方法很难建立准确的诊断模型。基于深度自编码网络(DAEN),提出了一种新型智能故障诊断方法,并且添加Softmax分类器,构建了深度自编码网络诊断模型。该模型采取... 现代化工生产过程中故障情况十分复杂,具有非线性、多种类、少标签问题,传统方法很难建立准确的诊断模型。基于深度自编码网络(DAEN),提出了一种新型智能故障诊断方法,并且添加Softmax分类器,构建了深度自编码网络诊断模型。该模型采取稀疏理论进行了改进,解决故障数据少,与正常数据不平衡问题。并且所提方法采取大量无标签样本作为训练集,进行预训练,优化模型参数,并以少量有标签样本作为测试集,进行微调。通过田纳西-伊斯曼(TE)过程仿真数据实验结果表明,相比较支持向量机(SVM)、K最近邻(KNN)等学习方法,DAEN与Softmax回归结合,得到更高的故障诊断正确率;而相比传统的DAEN诊断方法、以及基于反向传播神经网络(BPNN)的传统机器学习故障诊断方法,本文改进的DAEN诊断方法诊断精度得到明显提高。 展开更多
关键词 深度自编码网络 稀疏理论 反向传播神经网络 支持向量机 K最近邻 Softmax分类器 田纳西-伊斯曼过程 故障诊断
在线阅读 下载PDF
基于mini-1D-CNN模型的TE过程故障诊断 被引量:2
13
作者 杨余 杨鑫 +2 位作者 王英 翟持 张浩 《中国安全科学学报》 CAS CSCD 北大核心 2023年第2期173-178,共6页
为提升石化企业过程监测与故障诊断系统性能,满足化工过程故障诊断实时性、时效性的要求,提出一种基于过程历史数据驱动的最小一维卷积神经网络(mini-1D-CNN)的故障诊断模型。首先,通过一维卷积核学习和识别不同故障类型的数据特征,自... 为提升石化企业过程监测与故障诊断系统性能,满足化工过程故障诊断实时性、时效性的要求,提出一种基于过程历史数据驱动的最小一维卷积神经网络(mini-1D-CNN)的故障诊断模型。首先,通过一维卷积核学习和识别不同故障类型的数据特征,自动提取优势特征并进行故障分类;其次,通过逐步向后回归选择重要特征参数,优化模型结构。利用可实时获取的31个过程变量与操作参数,输入一维卷积神经网络(1D-CNN),监测与诊断田纳西-伊斯曼(TE)过程的主要故障。结果表明:相对于其他故障诊断模型,mini-1D-CNN模型在测试集上故障诊断率(FDR)较高,可达到96.50%;同时,mini-1D-CNN模型关注于TE过程故障诊断的重要特征参数,在降低参数量及降低训练和测试时间上具有显著优势。 展开更多
关键词 最小一维卷积神经网络(mini-1D-CNN) 田纳西-伊斯曼(TE)过程 故障诊断 过程监测 贡献系数
在线阅读 下载PDF
基于集成KPCA的非线性工业过程状态监测 被引量:1
14
作者 郑丹 陈路 童楚东 《计算机应用与软件》 北大核心 2023年第6期16-22,共7页
传统的KPCA(Kernel Principal Component Analysis)过程监测方法一般根据经验选取需要的核函数及一定宽度的参数,这样做是非常盲目的。同时单一KPCA模型不能对所有故障都有好的监测效果。为了解决此问题,提出基于集成KPCA的非线性工业... 传统的KPCA(Kernel Principal Component Analysis)过程监测方法一般根据经验选取需要的核函数及一定宽度的参数,这样做是非常盲目的。同时单一KPCA模型不能对所有故障都有好的监测效果。为了解决此问题,提出基于集成KPCA的非线性工业过程状态监测方法。通过选取一系列的核函数及其参数构建不同的KPCA模型得到子模型,用贝叶斯方法将众多子模型的监测统计量转化为故障概率,分两步进行融合,得到最终监测结果。实验结果表明,该方法显著地提高了监测性能,同时减小核函数及参数选取对故障监测的影响。 展开更多
关键词 核主成分分析 集成学习 贝叶斯融合 故障监测 田纳西-伊斯曼过程
在线阅读 下载PDF
基于高斯模型的工业过程数据的故障预测 被引量:1
15
作者 杨为惠 陈彦萍 +1 位作者 温福喜 高聪 《太原理工大学学报》 CAS 北大核心 2018年第1期86-93,共8页
针对工业过程中采集到的监控变量的时间问题序列数据,提出一种新的基于高斯过程模型的预测建模方法来实现故障预测。针对特定数据集重新构建高斯过程核函数,将工业过程的先验信息加入到数据驱动预测模型中,使模型具有更好的性能。与现... 针对工业过程中采集到的监控变量的时间问题序列数据,提出一种新的基于高斯过程模型的预测建模方法来实现故障预测。针对特定数据集重新构建高斯过程核函数,将工业过程的先验信息加入到数据驱动预测模型中,使模型具有更好的性能。与现有的预测模型相比,高斯过程回归模型可以在给出预测值的同时给出一个置信区间,用作故障预测的不确定性度量。在田纳西-伊斯(TE)曼过程模拟数据集上进行性能对比实验,实验结果表明,提出的故障预测方法具有更好的预测精度。 展开更多
关键词 故障预测 高斯过程回归 田纳西-伊斯曼过程 工业过程数据建模
在线阅读 下载PDF
基于AC-CNN模型的过程故障识别 被引量:5
16
作者 衷路生 吴春磊 《计算机工程与设计》 北大核心 2020年第2期542-549,共8页
针对复杂工业过程中故障变量特征提取效率低,分类数量较少且故障识别率较低等问题,提出基于非对称卷积核(asymmetric convolutions)的卷积神经网络(CNN)的工业过程故障识别模型。采取故障变量重构对故障数据进行预处理;引入非对称卷积... 针对复杂工业过程中故障变量特征提取效率低,分类数量较少且故障识别率较低等问题,提出基于非对称卷积核(asymmetric convolutions)的卷积神经网络(CNN)的工业过程故障识别模型。采取故障变量重构对故障数据进行预处理;引入非对称卷积核模型对重构后的输入故障变量进行特征提取,提高特征提取的效率;根据CNN模型改进得到具有AC架构的AC-CNN模型,识别TE(田纳西-伊斯曼)过程故障的在线测试集样本,实验结果表明,所提方法对TE过程故障数据集的识别效果明显,验证了模型的有效性和优异性。 展开更多
关键词 故障识别 故障变量重构 非对称卷积核 卷积神经网络 田纳西-伊斯曼过程
在线阅读 下载PDF
基于LLE与K均值聚类算法的工业过程故障诊断 被引量:18
17
作者 李元 耿泽伟 《系统仿真学报》 CAS CSCD 北大核心 2021年第9期2066-2073,共8页
工业过程中各类数据间具有一定的相似性,单纯利用K均值算法对其进行故障诊断时,存在很大的错误率。提出一种基于局部线性嵌入(Locally Linear Embedding,LLE)的K均值聚类算法,将正常数据运用LLE算法降维并求出投影矩阵,利用投影矩阵将... 工业过程中各类数据间具有一定的相似性,单纯利用K均值算法对其进行故障诊断时,存在很大的错误率。提出一种基于局部线性嵌入(Locally Linear Embedding,LLE)的K均值聚类算法,将正常数据运用LLE算法降维并求出投影矩阵,利用投影矩阵将原始故障数据映射到低维空间,再利用K均值算法对其聚类,建立检测与诊断模型。将此方法应用于田纳西-伊斯曼(Tennessee-Eastman,TE)过程中进行故障检测与诊断,并同传统K均值算法及LLE算法对比,结果表明:提出的新方法具有更高的正确率,同时可以有效地对未知类型的故障数据进行判别。 展开更多
关键词 K均值聚类 局部线性嵌入 田纳西-伊斯曼(Tennessee-Eastman TE)过程 故障诊断
在线阅读 下载PDF
基于稀疏主元分析的过程监控研究 被引量:2
18
作者 彭必灿 张正道 《计算机工程与应用》 CSCD 2014年第18期240-245,250,共7页
主元分析(principal component analysis)是一种多元统计技术,在过程监控和故障诊断中具有广泛的应用。针对过程监控中数据量大的特点,提出一种稀疏主元分析(sparse principal component analysis)方法,通过引入lasso约束函数,构建稀疏... 主元分析(principal component analysis)是一种多元统计技术,在过程监控和故障诊断中具有广泛的应用。针对过程监控中数据量大的特点,提出一种稀疏主元分析(sparse principal component analysis)方法,通过引入lasso约束函数,构建稀疏主元分析的框架,将PCA降维问题转化为回归最优化问题,从而求解得到稀疏化的主元,并提高了主元模型的抗干扰能力。由于稀疏后主元相关的数据量减少,利用数据建立过程监控模型,减少了计算量,并缩短了计算时间,进而提高了监控的实时性。利用田纳西伊斯特曼过程(TE processes)进行实验仿真,并与传统的主元分析方法进行对比研究。结果表明,新提出的稀疏主元分析方法在计算效率和监控实时性上均优于传统的主元分析方法。 展开更多
关键词 最小绝对收缩和选择算子(lasso) 稀疏主元分析 状态监控 田纳西伊斯特曼(TE)过程
在线阅读 下载PDF
基于动态KECA的工业过程故障检测
19
作者 郭金玉 朱明坤 李元 《沈阳工业大学学报》 CAS 北大核心 2023年第5期576-581,共6页
针对工业过程数据中存在的非线性特性和时间延迟性问题,提出了一种基于动态核熵成分分析(DKECA)的工业过程故障检测方法.将数据集按照时间序列构造增广矩阵,建立DKECA模型,并计算训练数据的Cauchy-Schwarz(CS)统计量及其控制限.将在线... 针对工业过程数据中存在的非线性特性和时间延迟性问题,提出了一种基于动态核熵成分分析(DKECA)的工业过程故障检测方法.将数据集按照时间序列构造增广矩阵,建立DKECA模型,并计算训练数据的Cauchy-Schwarz(CS)统计量及其控制限.将在线监测数据投影到DKECA模型上,其相应的统计量超出控制限的数据作为故障数据.实验结果表明,与传统的非线性方法相比,所提方法能够在保持较低误报率的基础上有效提升故障检测效果,通过引入时间延迟系数提取工业过程的动态变化信息,为传统故障检测方法在动态工业过程中的应用提供了参考. 展开更多
关键词 故障检测 非线性特性 时间延迟性 核熵成分分析 增广矩阵 Rényi熵 Cauchy-Schwarz统计量 田纳西伊斯曼过程
在线阅读 下载PDF
基于自适应阈值PLS的过程监测方法及应用
20
作者 梁梦圆 周平 《控制工程》 CSCD 北大核心 2019年第8期1437-1443,共7页
偏最小二乘法(Partial Least Squares, PLS)在工业过程监测等方面得到了广泛研究与应用。为提高基于PLS过程监测的监测效果,针对传统PLS方法采用固定阈值产生大量误报与漏报的问题,提出一种自适应阈值PLS的过程监测方法。该方法首先根... 偏最小二乘法(Partial Least Squares, PLS)在工业过程监测等方面得到了广泛研究与应用。为提高基于PLS过程监测的监测效果,针对传统PLS方法采用固定阈值产生大量误报与漏报的问题,提出一种自适应阈值PLS的过程监测方法。该方法首先根据过程正常历史数据建立PLS监测模型,并根据统计量的指数加权移动平均值,计算相应的自适应阈值,用于过程监测。最后,采用田纳西-伊斯曼(TE)过程和大型高炉炼铁过程的仿真实验测试方法的性能,实验结果表明,相对于传统PLS方法,基于自适应阈值PLS的过程监测能够降低误报率,提高过程监测性能。 展开更多
关键词 偏最小二乘 过程监测 自适应阈值 田纳西-伊斯曼过程 高炉炼铁
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部