期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
融合标签关联关系与用户社交关系的微博推荐方法 被引量:13
1
作者 马慧芳 贾美惠子 +1 位作者 张迪 蔺想红 《电子学报》 EI CAS CSCD 北大核心 2017年第1期112-118,共7页
通过分析微博特点及现有微博推荐算法的缺陷,提出一种融合了标签间关联关系与用户间社交关系的微博推荐方法.采用标签检索策略对未加标签和标签较少的用户进行加标,构建用户-标签矩阵,得到用户标签权重,为了解决该矩阵中稀疏的问题,通... 通过分析微博特点及现有微博推荐算法的缺陷,提出一种融合了标签间关联关系与用户间社交关系的微博推荐方法.采用标签检索策略对未加标签和标签较少的用户进行加标,构建用户-标签矩阵,得到用户标签权重,为了解决该矩阵中稀疏的问题,通过挖掘标签间的关联关系,继而更新用户-标签矩阵.考虑到多用户之间社交关系对挖掘用户兴趣并进行微博推荐的重要性,构建用户-用户社交关系相似度矩阵,并与更新后的用户-标签矩阵进行迭代,得到最终的用户兴趣并进行相关推荐.实验证明了该算法针对微博信息推荐是有效的. 展开更多
关键词 微博推荐 标签检索 用户-标签矩阵 用户标签权重 标签关联关系 用户-用户社交关系相似度矩阵
在线阅读 下载PDF
一种基于标签关联关系的微博推荐方法 被引量:9
2
作者 马慧芳 贾美惠子 +1 位作者 李晓红 鲁小勇 《计算机工程》 CAS CSCD 北大核心 2016年第4期197-201,208,共6页
通过分析微博特点及现有微博推荐发现算法的缺陷,提出一种新的微博推荐方法。采用标签检索策略对未加标签和标签较少的用户进行加标,构建用户-标签矩阵,得到用户-标签权重并利用标签信息表征用户兴趣。为解决该矩阵中高维稀疏的问题,通... 通过分析微博特点及现有微博推荐发现算法的缺陷,提出一种新的微博推荐方法。采用标签检索策略对未加标签和标签较少的用户进行加标,构建用户-标签矩阵,得到用户-标签权重并利用标签信息表征用户兴趣。为解决该矩阵中高维稀疏的问题,通过挖掘标签间的关联关系,继而更新用户-标签矩阵,获得最终的用户兴趣并进行相关推荐。实验结果表明,与忽略标签间关系的微博推荐方法相比,该推荐方法能够更有效地进行微博推荐。 展开更多
关键词 微博推荐 标签检索 用户-标签矩阵 用户-标签权重 标签关联关系
在线阅读 下载PDF
基于超图随机游走标签扩充的微博推荐方法 被引量:13
3
作者 马慧芳 张迪 +1 位作者 赵卫中 史忠植 《软件学报》 EI CSCD 北大核心 2019年第11期3397-3412,共16页
向微博用户推荐对其有价值和感兴趣的内容,是改善用户体验的重要途径.通过分析微博特点以及现有微博推荐算法的缺陷,利用标签信息表征用户兴趣,提出一种结合标签扩充与标签概率相关性的微博推荐方法.首先,考虑到大部分微博用户未给自己... 向微博用户推荐对其有价值和感兴趣的内容,是改善用户体验的重要途径.通过分析微博特点以及现有微博推荐算法的缺陷,利用标签信息表征用户兴趣,提出一种结合标签扩充与标签概率相关性的微博推荐方法.首先,考虑到大部分微博用户未给自己添加任何标签或添加标签过少,视用户发布微博为超边,微博中的词视为超点来构建超图,并以一定的加权策略对超边和超点进行加权,通过在超图上随机游走,得到一定数量的关键词,对微博用户标签进行扩充;然后,采用相关性标签权重加权方案构建用户-标签矩阵,利用标签之间的概率相关性,构造标签相似性矩阵,对用户-标签矩阵进行更新,使该矩阵既包含用户兴趣信息,又包含标签与标签之间的关系.以新浪微博公开API抓取的微博信息作为实验数据进行了一系列的实验和分析,结果表明,该推荐算法具有较好的效果. 展开更多
关键词 超图 随机游走 标签扩充 概率相关性 用户-标签矩阵 微博推荐
在线阅读 下载PDF
一种基于标签概率相关性的微博推荐方法 被引量:3
4
作者 张迪 马慧芳 +1 位作者 贾俊杰 余丽 《计算机工程与科学》 CSCD 北大核心 2017年第9期1742-1748,共7页
向微博用户推荐对其有价值和感兴趣的内容,是改善用户体验的重要途径。通过分析微博的特点以及现有微博推荐算法的缺陷,利用标签信息表征用户兴趣,提出一种基于标签概率相关性的微博推荐方法 LPCMR。首先,该方法利用标签之间的概率相关... 向微博用户推荐对其有价值和感兴趣的内容,是改善用户体验的重要途径。通过分析微博的特点以及现有微博推荐算法的缺陷,利用标签信息表征用户兴趣,提出一种基于标签概率相关性的微博推荐方法 LPCMR。首先,该方法利用标签之间的概率相关性,构造标签相似性矩阵。然后通过相关性标签权重加权方案,加强标签权重,构建用户-标签矩阵。针对用户标签矩阵稀疏的问题,采用标签相似性矩阵对用户-标签矩阵进行更新,使该矩阵既包含用户兴趣信息,又包含标签与标签之间的关系。以新浪微博公开API抓取的微博信息作为实验数据,进行了一系列的实验和分析,结果表明本文提出的推荐算法具有较好的效果。 展开更多
关键词 概率相关性 微博推荐 用户-标签矩阵 标签权重
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部