期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于不同分布下GARCH-M族模型的短期用户负荷预测 被引量:12
1
作者 王晨 叶江明 何嘉弘 《电力工程技术》 北大核心 2022年第5期110-115,共6页
电力负荷预测是电力系统研究的基础工作之一,而时间序列分析法是目前使用最广泛的预测方法。针对用户日度负荷时间序列存在的波动性及尖峰厚尾特征,文中提出利用均值广义自回归条件异方差(GARCH-M)族模型进行用户负荷预测。首先根据用... 电力负荷预测是电力系统研究的基础工作之一,而时间序列分析法是目前使用最广泛的预测方法。针对用户日度负荷时间序列存在的波动性及尖峰厚尾特征,文中提出利用均值广义自回归条件异方差(GARCH-M)族模型进行用户负荷预测。首先根据用户日度负荷时间序列的分布情况,利用拉格朗日乘数(LM)检验方法检验了负荷序列的自回归条件异方差(ARCH)效应;其次提出在高斯分布、t分布和广义误差分布(GED)3种不同分布下,根据波动补偿项的不同形式,建立GARCH-M族模型;最后结合损失函数进行预测分析,结果表明相比传统时间序列分析模型,在不同分布下的GARCH-M族模型提高了短期用户负荷预测准确度。 展开更多
关键词 时间序列分析法 短期用户负荷预测 自回归条件异方差(ARCH)效应 GARCH-M族模型 厚尾效应 损失函数
在线阅读 下载PDF
基于自适应图注意力网络的短期用户负荷预测 被引量:14
2
作者 黄冬梅 陈欢 +3 位作者 王宁 吴志坚 胡伟 孙园 《电力系统保护与控制》 EI CSCD 北大核心 2023年第20期140-149,共10页
为提高短期用户负荷预测精度,提出了一种基于自适应图注意力网络(adaptive graph attention network,AGAT)的短期用户负荷预测模型。首先,针对用户负荷存在规模小、波动性强的问题,通过门控机制结合多个大小不同的扩张卷积核来构造时序... 为提高短期用户负荷预测精度,提出了一种基于自适应图注意力网络(adaptive graph attention network,AGAT)的短期用户负荷预测模型。首先,针对用户负荷存在规模小、波动性强的问题,通过门控机制结合多个大小不同的扩张卷积核来构造时序特征提取层,从多个尺度上提取用户负荷的高维时序特征。同时,考虑到不同用户负荷间潜在的动态相关性,使用马氏距离构造动态图学习层,生成动态图邻接矩阵。然后,采用图注意力网络根据动态图邻接矩阵将用户负荷的高维时序特征进行信息汇聚。最后,通过全连接层输出用户负荷预测值。为验证AGAT模型的有效性,采用UCI电力负荷数据集进行预测实验,分别与多种基线模型比较。实验结果表明,所提模型预测指标优于各基线模型,有助于提高短期用户负荷预测精度。 展开更多
关键词 短期用户负荷预测 自适应图注意力网络 时序特征提取 动态图学习 图神经网络
在线阅读 下载PDF
基于时空注意力机制的台区多用户短期负荷预测 被引量:9
3
作者 赵洪山 吴雨晨 +2 位作者 温开云 孙承妍 薛阳 《电工技术学报》 EI CSCD 北大核心 2024年第7期2104-2115,共12页
针对在低压台区海量高波动用户负荷预测场景下,传统探索单个用户时间特征的负荷预测方法存在无法学习用户之间的空间相关性、无法实现多用户共同预测的问题,该文提出一种基于时空注意力机制的Transformer负荷预测模型(STformer),提供精... 针对在低压台区海量高波动用户负荷预测场景下,传统探索单个用户时间特征的负荷预测方法存在无法学习用户之间的空间相关性、无法实现多用户共同预测的问题,该文提出一种基于时空注意力机制的Transformer负荷预测模型(STformer),提供精准的台区多用户短期负荷预测。首先,改进传统Transformer模型,嵌入序列分解模块、自相关计算模块和空间注意力模块。其中,序列分解模块可以将波动较大的用户负荷曲线分解为相对平稳的多个子序列,有助于更好地提取负荷曲线的时间依赖性和周期因子;自相关计算是一种改进的注意力机制,可以挖掘多个历史同时期子序列的时间相关性;空间注意力机制可以提取台区多用户之间的动态空间相关性。然后,利用蒙特卡洛随机失活方法(MC dropout)将STformer拓展到台区多用户负荷概率预测。最后,采用真实台区多用户负荷数据集进行验证,与多种负荷预测模型进行对比,证明STformer模型可有效提高短期多用户负荷点预测和概率预测的精确性和鲁棒性。 展开更多
关键词 用户负荷预测 时空相关性 TRANSFORMER 模型
在线阅读 下载PDF
大用户电力负荷的多模型模糊综合预测 被引量:48
4
作者 谷云东 张素杰 冯君淑 《电工技术学报》 EI CSCD 北大核心 2015年第23期110-115,共6页
研究大用户的短期电力负荷预测问题,给出一种基于变权综合模糊推理的多模型综合预测方法。该方法首先引入基于质心相似度聚类的负荷模式分析算法,挖掘历史负荷数据中合群的典型负荷模式,并按相似性进行分组,同时剔除少量的离群异常记录... 研究大用户的短期电力负荷预测问题,给出一种基于变权综合模糊推理的多模型综合预测方法。该方法首先引入基于质心相似度聚类的负荷模式分析算法,挖掘历史负荷数据中合群的典型负荷模式,并按相似性进行分组,同时剔除少量的离群异常记录;然后给出基于共轭梯度的RBF神经网络训练算法,分别对每类典型负荷模式建立相应的单元预测模型;最后利用基于相似度加权的多模型变权综合模糊推理策略,实现各单元模型预测结果的自适应融合。案例仿真验证了多模型模糊综合预测方法的可靠性。 展开更多
关键词 用户负荷预测 质心相似度聚类 RBF 神经网络 多模型模糊综合预测 模糊推理
在线阅读 下载PDF
基于图卷积神经网络与K-means聚类的居民用户集群短期负荷预测 被引量:37
5
作者 董雷 陈振平 +2 位作者 韩富佳 王晓辉 蒲天骄 《电网技术》 EI CSCD 北大核心 2023年第10期4291-4301,共11页
随着智能电表等高级量测装置在用户侧的广泛部署与使用,海量多源异构的居民用户数据得以采集与存储,为用户级负荷预测提供良好的数据基础。精准的居民用户集群负荷预测是促进智能配电网需求侧管理、辅助电网公司实现削峰填谷的重要基础... 随着智能电表等高级量测装置在用户侧的广泛部署与使用,海量多源异构的居民用户数据得以采集与存储,为用户级负荷预测提供良好的数据基础。精准的居民用户集群负荷预测是促进智能配电网需求侧管理、辅助电网公司实现削峰填谷的重要基础。然而,现有的用户级负荷预测方法大多利用历史负荷序列的时间相关性构建数据驱动模型,却忽视相邻用户用电行为之间存在的潜在空间相关性。因此,提出一种基于K-means聚类和自适应时空同步图卷积神经网络的居民用户集群负荷预测方法。首先,采用K-means聚类将居民用户集群按照用电行为相似性划分成不同组;然后,基于居民用户集群的分组数量、各组居民用户的历史负荷数据以及各组居民用户负荷序列之间的相关性,构建面向居民用户集群负荷预测的时空图数据;最后,使用自适应时空同步图卷积神经网络实现居民用户集群短期负荷预测。文章通过真实的爱尔兰居民用户负荷公开数据集测试并验证所提方法的准确性和有效性,实验结果表明,相较于各个基准预测方法,所提方法能够充分挖掘并利用不同居民用户用电负荷之间的时空相关性,进而提高居民用户集群负荷预测精度。 展开更多
关键词 智能配电网 用户负荷预测 居民用户集群 图数据 时空同步图卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部