期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融入用户群体行为的移动社交网络舆情传播动态演化模型研究 被引量:10
1
作者 张继东 蒋丽萍 《现代情报》 CSSCI 2021年第5期159-166,177,共9页
[目的/意义]文章旨在探究移动社交网络中群体行为对用户个体的影响方式与效果。[方法/过程]对SEIR模型进行优化与改进,增加群体规模、从众效应和社会强化效应的影响机制,对4类群体在社会网络中的舆情传播机制进行动态分析。[结果/结论]... [目的/意义]文章旨在探究移动社交网络中群体行为对用户个体的影响方式与效果。[方法/过程]对SEIR模型进行优化与改进,增加群体规模、从众效应和社会强化效应的影响机制,对4类群体在社会网络中的舆情传播机制进行动态分析。[结果/结论]在无标度网络下进行仿真分析,结果表明,规模大的社群舆情传播会对规模小的社群产生间歇性影响,群体从众效应对信息传播深度和广度有显著影响,社会强化效应在一定范围内会增加信息传播的概率。 展开更多
关键词 移动社交网络 舆情传播 用户群体行为 网络舆情 SEIR模型 群体规模 从众效应 社会强化效应
在线阅读 下载PDF
Microblog User Recommendation Based on Particle Swarm Optimization
2
作者 Ling Xing Qiang Ma Ling Jiang 《China Communications》 SCIE CSCD 2017年第5期134-144,共11页
Considering that there exists a strong similarity between behaviors of users and intelligence of swarm of agents,in this paper we propose a novel user recommendation strategy based on particle swarm optimization(PSO)f... Considering that there exists a strong similarity between behaviors of users and intelligence of swarm of agents,in this paper we propose a novel user recommendation strategy based on particle swarm optimization(PSO)for Microblog network. Specifically,a PSO-based algorithm is developed to learn the user influence,where not only the number of followers is incorporated,but also the interactions among users(e.g.,forwarding and commenting on other users' tweets). Three social factors,the influence and the activity of the target user,together with the coherence between users,are fused to improve the performance of proposed recommendation strategy. Experimental results show that,compared to the well-known Page Rank-based algorithm,the proposed strategy performs much better in terms of precision and recall and it can effectively avoid a biased result caused by celebrity effect and zombie fans effect. 展开更多
关键词 particle swarm optimization Microblog social network user recommendation user influence
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部