期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
数据挖掘方法在用户流失预测分析中的应用 被引量:4
1
作者 刘光远 苑森淼 董立岩 《计算机工程与应用》 CSCD 北大核心 2007年第9期154-156,共3页
移动通信在高速发展的同时,出现了大量用户离网的现象,基于客户信息、消费行为等历史数据,进行客户离网预测分析成为各个运营商普遍关注的问题。文章基于客户的历史数据和短期偶发数据,提出了链型数据挖掘方法,并结合决策树,形成了一个... 移动通信在高速发展的同时,出现了大量用户离网的现象,基于客户信息、消费行为等历史数据,进行客户离网预测分析成为各个运营商普遍关注的问题。文章基于客户的历史数据和短期偶发数据,提出了链型数据挖掘方法,并结合决策树,形成了一个综合的链型树分类器(Chain Tree Classifier,CTC)和用户行为预测模型,实验结果显示,该分类器对移动通信运营商感兴趣的单个事件发生具有良好的预测能力,可被应用到客户离网预测中,从而帮助运营商提前发现具有离网倾向的用户,进而获得更高的利润。 展开更多
关键词 数据挖掘 链型树分类器 用户流失预测
在线阅读 下载PDF
基于Spark平台的网络游戏用户流失预测方法 被引量:1
2
作者 胡艳芳 熊文 高炜 《计算机工程与科学》 CSCD 北大核心 2022年第10期1730-1737,共8页
随着移动互联网的广泛普及,国内网络游戏市场日趋饱和,游戏公司获得新用户的成本不断增加,如何预防存量用户的流失已经成为市场营销的重心。提出了一种基于Spark平台的网络游戏用户流失预测方法,基于一个真实游戏日志数据对用户进行了... 随着移动互联网的广泛普及,国内网络游戏市场日趋饱和,游戏公司获得新用户的成本不断增加,如何预防存量用户的流失已经成为市场营销的重心。提出了一种基于Spark平台的网络游戏用户流失预测方法,基于一个真实游戏日志数据对用户进行了流失预测。首先,从日志数据中抽取和计算了用户特征;随后,按权重选取了一组重要特征;最后,以特征为输入、流失与否为输出进行了二分类建模。综合比较了随机森林、支持向量机、多层感知机、梯度提升决策树和逻辑回归等6种常见分类算法。实验结果表明,随机森林算法表现最优,模型预测精度达到91%。 展开更多
关键词 用户流失预测 SPARK 二分类 机器学习 随机森林
在线阅读 下载PDF
基于Stacking集成学习的流失用户预测方法 被引量:11
3
作者 郑红 叶成 +1 位作者 金永红 程云辉 《应用科学学报》 CAS CSCD 北大核心 2020年第6期944-954,共11页
利用机器学习算法对商业活动中普遍存在的客户流失问题进行预测.借鉴了Bagging的自助采样法思想,提出了一种基于自助采样法的Stacking集成方法.首先对数据集进行多次采样并加入属性扰动,然后使用所得数据子集训练基分类器副本,基分类器... 利用机器学习算法对商业活动中普遍存在的客户流失问题进行预测.借鉴了Bagging的自助采样法思想,提出了一种基于自助采样法的Stacking集成方法.首先对数据集进行多次采样并加入属性扰动,然后使用所得数据子集训练基分类器副本,基分类器决策结果由基分类器所对应的副本投票决定.最后在真实数据集中进行流失客户预测实验,结果显示,该文提出的方法在准确率、查准率和F1值3项指标上均好于所有基分类器和同结构的经典Stacking集成方法. 展开更多
关键词 Stacking集成学习 用户流失预测 自助采样法 机器学习
在线阅读 下载PDF
基于多模型融合的流失用户预测方法 被引量:6
4
作者 叶成 郑红 程云辉 《计算机工程与科学》 CSCD 北大核心 2019年第11期2027-2032,共6页
准确的用户流失预测能力有助于企业提高用户保持率、增加用户数量和增加盈利。现有的流失用户预测模型大多为单一模型或是多个模型的简单融合,没有充分发挥多模型集成的优势。借鉴了随机森林的Bootstrap Sampling的思想,提出了一种改进... 准确的用户流失预测能力有助于企业提高用户保持率、增加用户数量和增加盈利。现有的流失用户预测模型大多为单一模型或是多个模型的简单融合,没有充分发挥多模型集成的优势。借鉴了随机森林的Bootstrap Sampling的思想,提出了一种改进的Stacking集成方法,并将该方法应用到了真实数据集上进行流失用户的预测。通过验证集上的实验比较可知,提出的方法在流失用户F1值、召回率和预测准确率3项指标上均好于所有相同结构的经典Stacking集成方法;当采用恰当的集成结构时,其表现可超越基分类器上的最优表现。 展开更多
关键词 Stacking集成学习 用户流失预测 BOOTSTRAP Sampling 机器学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部