在群智感知器网络中,如何在限定时间内完成发布者指定的感知任务,是移动群智感知任务分发面临的一个重要问题.针对该问题,为了使感知用户间密切协作,并及时将执行感知任务反馈给发送者,提出一种基于用户关注度与时间监督的任务分发(task...在群智感知器网络中,如何在限定时间内完成发布者指定的感知任务,是移动群智感知任务分发面临的一个重要问题.针对该问题,为了使感知用户间密切协作,并及时将执行感知任务反馈给发送者,提出一种基于用户关注度与时间监督的任务分发(task distribution with user attention and time supervision,TDUATS)算法.该算法首先提出了用户间关注度,执行任务的起始监督、过程监督、完成监督等概念,然后通过分析执行感知任务的用户间关联关系,建立用户间关注度模型,对执行任务的过程进行监督,在此基础上对感知任务进行分发.实验结果表明,该算法不仅可在限定时间内完成感知任务,而且还可以监督任务执行的过程;有利于发布者及时了解任务的执行情况,对提高任务执行的满意度起到了很好的促进作用;同时,与对比算法相比较,也有较好的性能表现.展开更多
利用微博关注关系和社交行为构建微博信任网络,通过引入基于信任的随机游走模型,结合用户间兴趣相似度,建立了微博粉丝推荐模型。为提高粉丝推荐系统的覆盖率,将用户间的社交行为引入信任的计算,实现了TopN推荐。利用KDD Cup 2012腾讯...利用微博关注关系和社交行为构建微博信任网络,通过引入基于信任的随机游走模型,结合用户间兴趣相似度,建立了微博粉丝推荐模型。为提高粉丝推荐系统的覆盖率,将用户间的社交行为引入信任的计算,实现了TopN推荐。利用KDD Cup 2012腾讯微博数据进行了实证研究。实验结果表明:在混合多种社交行为的信任网络中,推荐算法的整体性能最优;推荐长度对推荐结果影响较大,当长度为40时算法获得最好的推荐性能;与主流的推荐算法相比,改进后的基于信任的随机游走推荐模型在推荐准确率和覆盖率等多种评价指标上都取得了更好的结果。研究结论为微博粉丝推荐研究提供了新的方法,为微博网络社会化推荐提供了新的视角。展开更多
文摘在群智感知器网络中,如何在限定时间内完成发布者指定的感知任务,是移动群智感知任务分发面临的一个重要问题.针对该问题,为了使感知用户间密切协作,并及时将执行感知任务反馈给发送者,提出一种基于用户关注度与时间监督的任务分发(task distribution with user attention and time supervision,TDUATS)算法.该算法首先提出了用户间关注度,执行任务的起始监督、过程监督、完成监督等概念,然后通过分析执行感知任务的用户间关联关系,建立用户间关注度模型,对执行任务的过程进行监督,在此基础上对感知任务进行分发.实验结果表明,该算法不仅可在限定时间内完成感知任务,而且还可以监督任务执行的过程;有利于发布者及时了解任务的执行情况,对提高任务执行的满意度起到了很好的促进作用;同时,与对比算法相比较,也有较好的性能表现.
文摘利用微博关注关系和社交行为构建微博信任网络,通过引入基于信任的随机游走模型,结合用户间兴趣相似度,建立了微博粉丝推荐模型。为提高粉丝推荐系统的覆盖率,将用户间的社交行为引入信任的计算,实现了TopN推荐。利用KDD Cup 2012腾讯微博数据进行了实证研究。实验结果表明:在混合多种社交行为的信任网络中,推荐算法的整体性能最优;推荐长度对推荐结果影响较大,当长度为40时算法获得最好的推荐性能;与主流的推荐算法相比,改进后的基于信任的随机游走推荐模型在推荐准确率和覆盖率等多种评价指标上都取得了更好的结果。研究结论为微博粉丝推荐研究提供了新的方法,为微博网络社会化推荐提供了新的视角。