期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于评分填充与信任信息的混合推荐算法 被引量:3
1
作者 沈学利 李子健 赫辰皓 《计算机应用》 CSCD 北大核心 2020年第10期2789-2794,共6页
针对推荐系统的数据稀疏性导致的推荐效果不佳的问题,提出一种基于评分填充与信任信息的混合推荐的算法RTWSO(Real-value user item restricted Boltzmann machine Trust WSO)。首先,使用改进的受限玻尔兹曼机模型对评分矩阵进行填充,... 针对推荐系统的数据稀疏性导致的推荐效果不佳的问题,提出一种基于评分填充与信任信息的混合推荐的算法RTWSO(Real-value user item restricted Boltzmann machine Trust WSO)。首先,使用改进的受限玻尔兹曼机模型对评分矩阵进行填充,以缓解评分矩阵的稀疏性问题;其次,从信任关系中提取信任与被信任关系,并通过基于矩阵分解的隐含信任关系相似度来解决信任信息稀疏的问题,而且对原有算法进行了包含信任信息的修正,以提高推荐准确度;最后,通过加权Slope One(WSO)算法对矩阵填充与信任相似度信息加以整合,并对评分数据进行预测。在Epinions与Ciao数据集中验证算法性能,可见所提出混合推荐算法较组成算法在推荐准确度上提升3%以上,较现有社会化推荐算法SocialIT(Social recommendation algorithm based on Implict similarity in Trust)在推荐准确度上提升1.2%以上。实验结果表明,所提出的基于评分填充与信任信息的混合推荐算法在一定程度上提高了推荐准确度。 展开更多
关键词 受限玻尔兹曼机 加权Slope One 用户信任相似度 矩阵分解 评分预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部