期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
用户互动表示下的影响力最大化算法
1
作者 张萌 李维华 《计算机应用》 CSCD 北大核心 2021年第7期1964-1969,共6页
影响力最大化问题旨在社交网络中选取一组有效的种子用户,使信息通过这些用户能够达到最大范围的传播。传统影响力最大化问题的研究依赖于特定的网络结构和扩散模型,而经过人工处理的简化网络和建立在假设之上的扩散模型在评估用户真实... 影响力最大化问题旨在社交网络中选取一组有效的种子用户,使信息通过这些用户能够达到最大范围的传播。传统影响力最大化问题的研究依赖于特定的网络结构和扩散模型,而经过人工处理的简化网络和建立在假设之上的扩散模型在评估用户真实影响力时存在较大局限。为解决该问题,提出一种基于用户互动表示的影响力最大化算法(IMUIR)。首先,根据用户互动痕迹进行随机采样,构造用户上下文对,并经过SkipGram模型训练得到用户的向量表示;然后,利用贪婪策略,根据源用户自身的活跃度和这些用户与其他用户的交互联系度选择最佳种子集。为验证IMUIR的有效性,将其与Random、AC、Kcore和Imfector在2个拥有真实互动信息的社交网络上进行对比实验。结果表明,利用IMUIR选出的种子集质量更高,产生的影响传播范围较广,且在2个数据集上表现稳定。 展开更多
关键词 社交网络 用户互动表示 影响力最大化 表示学习 SkipGram模型 贪婪策略
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部