期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于标签挖掘的个性化推荐算法 被引量:6
1
作者 时光洋 于万钧 陈颖 《计算机工程与设计》 北大核心 2024年第3期932-939,共8页
基于标签的推荐算法中存在两个主要缺陷,缺乏用户对于标签偏好值的量化,以及不同标签在用户使用中所占权重。为此提出一种从标签角度出发的个性化推荐算法。分析用户历史行为中使用过的标签,根据用户历史行为建立用户的标签兴趣模型,利... 基于标签的推荐算法中存在两个主要缺陷,缺乏用户对于标签偏好值的量化,以及不同标签在用户使用中所占权重。为此提出一种从标签角度出发的个性化推荐算法。分析用户历史行为中使用过的标签,根据用户历史行为建立用户的标签兴趣模型,利用标签兴趣模型计算用户对不同标签的偏好值;统计用户的历史评分记录,计算不同标签所占权重;将两者进行线性组合,得出用户对标签的兴趣度。利用余弦相似度,计算用户偏好相似度,将用户偏好相似度引入到矩阵分解模型中,进行项目评分预测和推荐。实验结果表明,在MovieLens数据集上,该算法相比于传统算法LFM和SVD++在RMSE上分别降低了5.00%和1.41%,在MAE上分别降低了5.07%和1.00%。 展开更多
关键词 推荐系统 标签 偏好相似度 矩阵分解 用户个性化推荐 协同过滤推荐算法 兴趣相似度
在线阅读 下载PDF
融合标签和长短期兴趣的矩阵分解推荐算法 被引量:4
2
作者 姬璐 于万钧 陈颖 《计算机工程与设计》 北大核心 2023年第3期777-783,共7页
为提高用户兴趣挖掘的准确性,实现更加精准的用户个性化推荐,提出一种融合标签和长短期兴趣的矩阵分解推荐算法。利用用户使用各标签的次数和生命周期挖掘用户的长短期兴趣,计算用户标签偏好值;利用用户标签偏好值比较用户间的兴趣,获... 为提高用户兴趣挖掘的准确性,实现更加精准的用户个性化推荐,提出一种融合标签和长短期兴趣的矩阵分解推荐算法。利用用户使用各标签的次数和生命周期挖掘用户的长短期兴趣,计算用户标签偏好值;利用用户标签偏好值比较用户间的兴趣,获得更加精准的用户间兴趣相似度;将用户间兴趣相似度引入矩阵分解模型,预测项目评分并进行推荐。实验结果表明,该算法挖掘出的用户兴趣比其它推荐算法准确。 展开更多
关键词 用户个性化推荐 协同过滤推荐算法 矩阵分解 标签信息 长短期兴趣 用户标签偏好值 兴趣相似度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部