期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
地下水中痕量汞的形态分布与迁移机制
1
作者 皮坤福 王焰新 +2 位作者 LIU Juewen 杨雅楠 PHILIPPE Van Cappellen 《水文地质工程地质》 北大核心 2025年第2期1-13,I0001-I0004,共17页
精确测定地下水中不同形态汞(Hg)的浓度变化,对于深入解析汞的迁移转化机制及其对水生态安全构成的潜在风险具有重要意义。然而,这一基础性研究工作目前面临挑战,瓶颈问题在于缺乏一种兼具高灵敏度、高可靠性且适宜现场快速部署的检测技... 精确测定地下水中不同形态汞(Hg)的浓度变化,对于深入解析汞的迁移转化机制及其对水生态安全构成的潜在风险具有重要意义。然而,这一基础性研究工作目前面临挑战,瓶颈问题在于缺乏一种兼具高灵敏度、高可靠性且适宜现场快速部署的检测技术,以实现对地下水中超痕量Hg(II)的精准监测。鉴于此,文章介绍了基于脱氧核糖核酸(DNA)传感材料的新型检测手段,并深入探究了两种生物传感方法的可行性及优劣:其一是利用DNA功能化水凝胶直接检测地下水中的Hg(II);其二则是通过结合薄膜扩散梯度技术(DGT)与DNA传感元件,构建DNA-DGT传感器,实现Hg(II)的即时采样与检测。通过对来自加拿大格兰德河流域具有多种水文地球化学特征的地下水进行测试,发现DNA功能化水凝胶能够快速检测溶解态Hg(II),但不适用于低浓度Hg(II)(<1.60μg/L),而DNA-DGT传感器可以根据测试时长捕获不同浓度的超痕量Hg(II)形态。进一步结合DNA-DGT传感器检测和水文地球化学计算对地下水中Hg(II)形态进行量化分析,发现温度、pH值、Cl^(-)和溶解性有机质(dissolved organic matter,DOM)对痕量Hg(II)的形态分布、扩散效率及迁移能力产生显著影响。结合水文地球化学模拟分析,DNA-DGT测量结果揭示了Hg(II)的迁移转化过程与地下水中硫的氧化还原循环存在密切关联。研究强调了运用高灵敏度、便于现场部署的生物传感方法监测低浓度Hg(II),对于认识地下水中汞的迁移转化规律及其对安全供水构成的潜在威胁具有重要意义。 展开更多
关键词 生物纳米传感 地下水污染 原位检测 水文地球化学模拟 迁移转化
在线阅读 下载PDF
Chiral inorganic nanocatalysts for electrochemical and enzyme⁃mimicked biosensing
2
作者 LIU Chuang SUN Lichao ZHANG Qingfeng 《无机化学学报》 北大核心 2025年第1期59-78,共20页
In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intrig... In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intriguing geometry‑dependent optical chirality,which benefits the combination of plasmonic characteristics with chirality.Recent advances in the biomolecule‑directed geometric control of intrinsically chiral plasmonic nanomaterials have further provided great opportunities for their widespread applications in many emerging technological areas.In this review,we present the recent progress in biosensing using chiral inorganic nanomaterials,with a particular focus on electrochemical and enzyme‑mimicking catalytic approaches.This paper commences with a review of the basic tenets underlying chiral nanocatalysts,incorporating the chiral ligand‑induced mechanism and the architectures of intrinsically chiral nanostructures.Additionally,it methodically expounds upon the applications of chiral nanocatalysts in the realms of electrochemical biosensing and enzyme‑mimicking catalytic biosensing respectively.Conclusively,it proffers a prospective view of the hurdles and prospects that accompany the deployment of chiral nanoprobes for nascent biosensing applications.By rational design of the chiral nanoprobes,it is envisioned that biosensing with increasing sensitivity and resolution toward the single‑molecule level can be achieved,which will substantially promote sensing applications in many emerging interdisciplinary areas. 展开更多
关键词 chiral inorganic nanomaterial chiral plasmonic electrochemical biosensing enzyme‑mimicked biosensing asymmetric nanocatalysis
在线阅读 下载PDF
Laccase biosensor using magnetic multiwalled carbon nanotubes and chitosan/silica hybrid membrane modified magnetic carbon paste electrode 被引量:1
3
作者 庞娅 曾光明 +3 位作者 汤琳 章毅 李贞 陈丽娟 《Journal of Central South University》 SCIE EI CAS 2011年第6期1849-1856,共8页
A simple and rapid strategy to construct laccase biosensor for determination of catechol was investigated. Magnetic multiwalled carbon nanotubes (MMCNT) which possess excellent capability of electron transfer were pre... A simple and rapid strategy to construct laccase biosensor for determination of catechol was investigated. Magnetic multiwalled carbon nanotubes (MMCNT) which possess excellent capability of electron transfer were prepared by chemical coprecipitation method. Scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) were used to identify its surfacetopography and magnetization, respectively. Laccase was immobilized on the MMCNT modified magnetic carbon paste electrode by the aid of chitosan/silica (CS) hybrid membrane. Using current-time detection method, the biosensor shows a linear response related to the concentration of catechol in the range from 10-7 to 0.165×10-3 mol/L. The corresponding detection limit is 3.34×10-8 mol/L based on signal-to-noise ratios (S/N) ≥3 under the optimized conditions. In addition, its response current retains 90% of the original after being stored for 45 d. The results indicate that this proposed strategy can be expected to develop other enzyme-based biosensors. 展开更多
关键词 magnetic multiwalled carbon nanotubes PARAMAGNETISM chitosan/silica sol laccase biosensor catechol
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部