命名实体识别任务旨在识别出非结构化文本中所包含的实体并将其分配给预定义的实体类别中.随着互联网和社交媒体的发展,文本信息往往伴随着图像等视觉模态信息出现,传统的命名实体识别方法在多模态信息中表现不佳.近年来,多模态命名实...命名实体识别任务旨在识别出非结构化文本中所包含的实体并将其分配给预定义的实体类别中.随着互联网和社交媒体的发展,文本信息往往伴随着图像等视觉模态信息出现,传统的命名实体识别方法在多模态信息中表现不佳.近年来,多模态命名实体识别任务广受重视.然而,现有的多模态命名实体识别方法中,存在跨模态知识间的细粒度对齐不足问题,文本表征会融合语义不相关的图像信息,进而引入噪声.为了解决这些问题,提出了一种基于细粒度图文对齐的多模态命名实体识别方法(FGITA:A Multi-Modal NER Frame based on Fine-Grained Image-Text Alignment).首先,该方法通过目标检测、语义相似性判断等,确定更为细粒度的文本实体和图像子对象之间的语义相关性;其次,通过双线性注意力机制,计算出图像子对象与实体的相关性权重,并依据权重将子对象信息融入到实体表征中;最后,提出了一种跨模态对比学习方法,依据图像和实体之间的匹配程度,优化实体和图像在嵌入空间中的距离,借此帮助实体表征学习相关的图像信息.在两个公开数据集上的实验表明,FGITA优于5个主流多模态命名实体识别方法,验证了方法的有效性,同时验证了细粒度跨模态对齐在多模态命名实体识别任务中的重要性和优越性.展开更多
中文命名实体识别(NER)任务旨在抽取非结构化文本中包含的实体并给它们分配预定义的实体类别。针对大多数中文NER方法在上下文信息缺乏时的语义学习不足问题,提出一种层次融合多元知识的NER框架——HTLR(Chinese NER method based on Hi...中文命名实体识别(NER)任务旨在抽取非结构化文本中包含的实体并给它们分配预定义的实体类别。针对大多数中文NER方法在上下文信息缺乏时的语义学习不足问题,提出一种层次融合多元知识的NER框架——HTLR(Chinese NER method based on Hierarchical Transformer fusing Lexicon and Radical),以通过分层次融合的多元知识来帮助模型学习更丰富、全面的上下文信息和语义信息。首先,通过发布的中文词汇表和词汇向量表识别语料中包含的潜在词汇并把它们向量化,同时通过优化后的位置编码建模词汇和相关字符的语义关系,以学习中文的词汇知识;其次,通过汉典网发布的基于汉字字形的编码将语料转换为相应的编码序列以代表字形信息,并提出RFECNN(Radical Feature Extraction-Convolutional Neural Network)模型来提取字形知识;最后,提出Hierarchical Transformer模型,其中由低层模块分别学习字符和词汇以及字符和字形的语义关系,并由高层模块进一步融合字符、词汇、字形等多元知识,从而帮助模型学习语义更丰富的字符表征。在Weibo、Resume、MSRA和OntoNotes4.0公开数据集进行了实验,与主流方法NFLAT(Non-Flat-LAttice Transformer for Chinese named entity recognition)的对比结果表明,所提方法的F1值在4个数据集上分别提升了9.43、0.75、1.76和6.45个百分点,达到最优水平。可见,多元语义知识、层次化融合、RFE-CNN结构和Hierarchical Transformer结构对学习丰富的语义知识及提高模型性能是有效的。展开更多
外来入侵植物命名实体识别是进一步挖掘入侵植物信息的关键步骤。为解决外来入侵植物领域命名实体识别存在训练数据稀缺、字符级向量表征单一、专业实体识别精度不足等问题,构建了一种基于多特征融合的外来入侵植物细粒度命名实体识别模...外来入侵植物命名实体识别是进一步挖掘入侵植物信息的关键步骤。为解决外来入侵植物领域命名实体识别存在训练数据稀缺、字符级向量表征单一、专业实体识别精度不足等问题,构建了一种基于多特征融合的外来入侵植物细粒度命名实体识别模型(invasive alien plant fine-grained named entity recognition model based on multi-feature fusion,IAPMFF)。首先,采用RoBERTa(Robustly optimized BERT approach,RoBERTa)预训练模型为基础架构,通过构建领域专用词典并通过词汇特征向量融合,增强模型对低频词及专业术语的表征能力;其次,设计双通道特征提取层,利用双向长短时记忆网络(Bi-directional long-short term memory,BiLSTM)提取长序列语义特征,结合卷积残差结构(convolution residual structure,CRS)捕获更多细粒度特征;然后,设计分层特征融合机制,通过多头自注意力机制加权融合两种特征向量,构建多维度语义表征;最后,采用条件随机场(conditional random field,CRF)进行序列解码优化。基于专家知识,构建包含24类细粒度实体标签的外来入侵植物命名实体识别数据集。试验表明,IAP-MFF模型在外来入侵植物命名实体识别数据集上取得91.51%精确率、92.51%召回率和92.01%的F1值,较基线模型分别提升4.40、3.39、3.91个百分点,显著改善了小样本细粒度实体的识别效果。在Weibo、Resume公共数据集上F1值分别达到72.75%和97.15%,表明了模型的泛化性和优越性能。IAP-MFF模型通过融合包含领域知识在内的多种特征,有效提升实体识别精度与泛化能力,为外来入侵植物知识图谱构建奠定技术基础。展开更多
文摘现有的基于双向长短时记忆(BiLSTM)网络的命名实体识别(NER)模型难以全面理解文本的整体语义以及捕捉复杂的实体关系。因此,提出一种基于全域信息融合和多维关系感知的NER模型。首先,通过BERT(Bidirectional Encoder Representations from Transformers)获取输入序列的向量表示,并结合BiLSTM进一步学习输入序列的上下文信息。其次,提出由梯度稳定层和特征融合模块组成的全域信息融合机制:前者使模型保持稳定的梯度传播并更新优化输入序列的表示,后者则融合BiLSTM的前后向表示获取更全面的特征表示。接着,构建多维关系感知结构学习不同子空间单词的关联性,以捕获文档中复杂的实体关系。此外,使用自适应焦点损失函数动态调整不同类别实体的权重,提高模型对少数类实体的识别性能。最后,在7个公开数据集上将所提模型和11个基线模型进行对比,实验结果表明所提模型的F1值均优于对比模型,可见该模型的综合性较优。
文摘命名实体识别任务旨在识别出非结构化文本中所包含的实体并将其分配给预定义的实体类别中.随着互联网和社交媒体的发展,文本信息往往伴随着图像等视觉模态信息出现,传统的命名实体识别方法在多模态信息中表现不佳.近年来,多模态命名实体识别任务广受重视.然而,现有的多模态命名实体识别方法中,存在跨模态知识间的细粒度对齐不足问题,文本表征会融合语义不相关的图像信息,进而引入噪声.为了解决这些问题,提出了一种基于细粒度图文对齐的多模态命名实体识别方法(FGITA:A Multi-Modal NER Frame based on Fine-Grained Image-Text Alignment).首先,该方法通过目标检测、语义相似性判断等,确定更为细粒度的文本实体和图像子对象之间的语义相关性;其次,通过双线性注意力机制,计算出图像子对象与实体的相关性权重,并依据权重将子对象信息融入到实体表征中;最后,提出了一种跨模态对比学习方法,依据图像和实体之间的匹配程度,优化实体和图像在嵌入空间中的距离,借此帮助实体表征学习相关的图像信息.在两个公开数据集上的实验表明,FGITA优于5个主流多模态命名实体识别方法,验证了方法的有效性,同时验证了细粒度跨模态对齐在多模态命名实体识别任务中的重要性和优越性.
文摘中文命名实体识别(NER)任务旨在抽取非结构化文本中包含的实体并给它们分配预定义的实体类别。针对大多数中文NER方法在上下文信息缺乏时的语义学习不足问题,提出一种层次融合多元知识的NER框架——HTLR(Chinese NER method based on Hierarchical Transformer fusing Lexicon and Radical),以通过分层次融合的多元知识来帮助模型学习更丰富、全面的上下文信息和语义信息。首先,通过发布的中文词汇表和词汇向量表识别语料中包含的潜在词汇并把它们向量化,同时通过优化后的位置编码建模词汇和相关字符的语义关系,以学习中文的词汇知识;其次,通过汉典网发布的基于汉字字形的编码将语料转换为相应的编码序列以代表字形信息,并提出RFECNN(Radical Feature Extraction-Convolutional Neural Network)模型来提取字形知识;最后,提出Hierarchical Transformer模型,其中由低层模块分别学习字符和词汇以及字符和字形的语义关系,并由高层模块进一步融合字符、词汇、字形等多元知识,从而帮助模型学习语义更丰富的字符表征。在Weibo、Resume、MSRA和OntoNotes4.0公开数据集进行了实验,与主流方法NFLAT(Non-Flat-LAttice Transformer for Chinese named entity recognition)的对比结果表明,所提方法的F1值在4个数据集上分别提升了9.43、0.75、1.76和6.45个百分点,达到最优水平。可见,多元语义知识、层次化融合、RFE-CNN结构和Hierarchical Transformer结构对学习丰富的语义知识及提高模型性能是有效的。
文摘外来入侵植物命名实体识别是进一步挖掘入侵植物信息的关键步骤。为解决外来入侵植物领域命名实体识别存在训练数据稀缺、字符级向量表征单一、专业实体识别精度不足等问题,构建了一种基于多特征融合的外来入侵植物细粒度命名实体识别模型(invasive alien plant fine-grained named entity recognition model based on multi-feature fusion,IAPMFF)。首先,采用RoBERTa(Robustly optimized BERT approach,RoBERTa)预训练模型为基础架构,通过构建领域专用词典并通过词汇特征向量融合,增强模型对低频词及专业术语的表征能力;其次,设计双通道特征提取层,利用双向长短时记忆网络(Bi-directional long-short term memory,BiLSTM)提取长序列语义特征,结合卷积残差结构(convolution residual structure,CRS)捕获更多细粒度特征;然后,设计分层特征融合机制,通过多头自注意力机制加权融合两种特征向量,构建多维度语义表征;最后,采用条件随机场(conditional random field,CRF)进行序列解码优化。基于专家知识,构建包含24类细粒度实体标签的外来入侵植物命名实体识别数据集。试验表明,IAP-MFF模型在外来入侵植物命名实体识别数据集上取得91.51%精确率、92.51%召回率和92.01%的F1值,较基线模型分别提升4.40、3.39、3.91个百分点,显著改善了小样本细粒度实体的识别效果。在Weibo、Resume公共数据集上F1值分别达到72.75%和97.15%,表明了模型的泛化性和优越性能。IAP-MFF模型通过融合包含领域知识在内的多种特征,有效提升实体识别精度与泛化能力,为外来入侵植物知识图谱构建奠定技术基础。