期刊文献+
共找到2,479篇文章
< 1 2 124 >
每页显示 20 50 100
深圳土工参数数据库及基于生成对抗网络的多元参数分布预测模型研究 被引量:1
1
作者 潘秋景 孙广灿 +2 位作者 蔡永敏 苏栋 李凤伟 《岩土力学》 北大核心 2025年第2期563-572,共10页
借鉴大数据思想,充分利用岩土工程勘察数据,实现岩土参数精细化表征和建模,是岩土工程数字孪生的重要组成部分。通过收集深圳市75个工程项目的岩土工程勘察报告,建立了深圳黏性土及风化残积土8个土工试验参数数据库SZ-SOIL/8/11369,分... 借鉴大数据思想,充分利用岩土工程勘察数据,实现岩土参数精细化表征和建模,是岩土工程数字孪生的重要组成部分。通过收集深圳市75个工程项目的岩土工程勘察报告,建立了深圳黏性土及风化残积土8个土工试验参数数据库SZ-SOIL/8/11369,分析了深圳黏性土及风化残积土土工试验参数的分布特征和规律。进一步利用该数据库,提出了基于生成对抗网络(generative adversarial network,简称GAN)的土工试验物理力学参数概率分布及预测模型,并将提出的方法应用于深圳某项目,针对单组土工试验样本利用物理参数成功预测了其力学参数,并利用少量样本正确预测了该工程场地的土工试验参数的分布。结果表明,所提方法能够对缺失参数样本进行合理预测,并实现了通过大范围地区勘察数据降低局部工程场地岩土参数不确定性的目的,可为深圳岩土与地下工程结构韧性设计和风险评价提供参数保障。 展开更多
关键词 土工参数分布 数据库 预测 生成对抗网络
在线阅读 下载PDF
基于改进型生成对抗网络的矿井图像超分辨重建方法研究 被引量:1
2
作者 张帆 刘莹 +2 位作者 宋惠 张嘉荣 程海星 《煤炭科学技术》 北大核心 2025年第S1期338-345,共8页
智能化无人开采是煤炭资源绿色、智能、安全、高效开采的技术发展趋势,高分辨率的矿井图像能够为煤矿智能开采和智能监控提供关键技术支撑。针对煤矿井下雾尘环境,目前采用常规的深度学习方法虽然能够提高矿井图像重建效果,但是受井下... 智能化无人开采是煤炭资源绿色、智能、安全、高效开采的技术发展趋势,高分辨率的矿井图像能够为煤矿智能开采和智能监控提供关键技术支撑。针对煤矿井下雾尘环境,目前采用常规的深度学习方法虽然能够提高矿井图像重建效果,但是受井下环境噪声影响,模型训练的稳定性较差,难以获得矿井图像的重建高频信息,导致图像重构质量欠佳,易出现矿井图像模糊和分辨率下降等问题。针对上述问题,提出一种基于生成对抗网络的矿井图像超分辨率重建方法。该方法基于SRGAN网络,对网络结构和损失函数进行改进优化,在生成器的浅层特征提取层和重建层分别采用2个5×5的卷积层,并在浅层特征提取层的每个卷积层后加入非线性激活函数,深层特征提取层采用残差结构,通过级联亚像素卷积层以实现矿井图像不同倍数的超分辨重建;采用Wasserstein距离对损失函数进行改进,并去掉判别器输出层的Sigmoid,使用RMSProp方法对网络进行优化,提高模型训练的收敛速度和稳定性;利用训练好的生成器模型,据此分别对矿井图像进行2倍和4倍超分辨重建,并对实验结果进行主观视觉分析和客观评价。结果表明,与传统的双三次插值、SRCNN、SRGAN相比,在相同缩放因子条件下,所提方法的峰值信噪比分别提升了2.68、1.50和1.59 dB,结构相似性分别提升了0.033 4、0.004 8和0.006 1,所提方法能够重建出清晰的矿井图像纹理和细节信息,在主观视觉上以及峰值信噪比和结构相似性上都实现了更好的重建效果,且整体性能优于其他几种方法,有效提高了矿井图像的分辨率。 展开更多
关键词 煤矿智能化 矿井图像 超分辨重建 生成对抗网络 SRGAN
在线阅读 下载PDF
基于条件生成对抗网络与迁移学习的暂态电压稳定超前判别 被引量:2
3
作者 王渝红 何其多 +5 位作者 郑宗生 周旭 马欢 程定一 赵康 周辰予 《电力自动化设备》 北大核心 2025年第2期159-166,共8页
为解决样本不平衡导致的暂态电压稳定判别准确性不足的问题以及实现暂态电压稳定超前判别,提出一种基于条件生成对抗网络(CGAN)与迁移学习的暂态电压稳定超前判别方法。考虑暂态电压稳定样本类型,利用CGAN定向扩增暂态电压样本集,解决... 为解决样本不平衡导致的暂态电压稳定判别准确性不足的问题以及实现暂态电压稳定超前判别,提出一种基于条件生成对抗网络(CGAN)与迁移学习的暂态电压稳定超前判别方法。考虑暂态电压稳定样本类型,利用CGAN定向扩增暂态电压样本集,解决样本不平衡问题,从而提升暂态电压稳定判别准确性;考虑到CGAN生成器与暂态电压时序预测模型具有相似的学习任务,将CGAN生成器模型迁移至暂态电压时序预测模型,结合工程判据实现暂态电压稳定超前判别,并进一步提升暂态电压稳定判别准确性。在CEPRI-VC暂态电压稳定分析系统中验证了所提方法的有效性。 展开更多
关键词 暂态电压稳定 稳定超前判别 迁移学习 条件生成对抗网络 数据生成
在线阅读 下载PDF
基于代理生成对抗网络的服务质量感知云API推荐系统投毒攻击
4
作者 陈真 刘伟 +3 位作者 吕瑞民 马佳洁 冯佳音 尤殿龙 《通信学报》 北大核心 2025年第3期174-186,共13页
针对现有投毒攻击方法生成的虚假用户攻击数据存在攻击效果差且易被检测的不足,提出一种基于代理生成对抗网络的投毒攻击方法。首先,在生成对抗网络中采用K-means算法将数据分类,并引入自注意力机制学习每个类中的全局特征,解决生成对... 针对现有投毒攻击方法生成的虚假用户攻击数据存在攻击效果差且易被检测的不足,提出一种基于代理生成对抗网络的投毒攻击方法。首先,在生成对抗网络中采用K-means算法将数据分类,并引入自注意力机制学习每个类中的全局特征,解决生成对抗网络在数据稀疏时难以有效捕捉真实用户复杂行为模式这一问题,提升虚假用户的隐蔽性。其次,引入代理模型评估生成对抗网络生成的虚假用户的攻击效果,将评估结果作为代理损失优化生成对抗网络,进而实现在兼顾虚假用户隐蔽性的同时增强攻击效果。云API服务质量数据集上的实验表明,所提方法在兼顾攻击的有效性和隐蔽性方面均优于现有方法。 展开更多
关键词 推荐系统 云API 投毒攻击 生成对抗网络 代理模型
在线阅读 下载PDF
基于生成对抗网络和卷积神经网络的高速铁路地震预警干扰信号识别方法
5
作者 宋晋东 栾世成 +7 位作者 李山有 马强 孙文韬 刘赫奕 周学影 姚鹍鹏 黄鹏杰 朱景宝 《中国铁道科学》 北大核心 2025年第1期225-232,共8页
为提升高速铁路地震预警系统中地震事件识别的可靠性,提出基于生成对抗网络(GAN)和卷积神经网络(CNN)的高速铁路地震预警干扰信号识别方法。首先,通过GAN对打夯干扰信号进行数据增强,以实现数据平衡;其次,设计并构建GAN-CNN打夯干扰信... 为提升高速铁路地震预警系统中地震事件识别的可靠性,提出基于生成对抗网络(GAN)和卷积神经网络(CNN)的高速铁路地震预警干扰信号识别方法。首先,通过GAN对打夯干扰信号进行数据增强,以实现数据平衡;其次,设计并构建GAN-CNN打夯干扰信号识别模型,并对其进行训练和测试;最后,通过对比试验,验证该模型在干扰信号识别中的有效性和准确性。结果表明:与未使用GAN进行数据增强的情况相比,所提方法识别打夯干扰信号和地震事件信号的准确率分别为99.60%和100%,性能显著提升;此外,GANCNN模型的交并比、准确率、召回率和综合能力评价指标也得到提高。该方法可为高速铁路地震预警干扰信号识别提供参考。 展开更多
关键词 地震预警 高速铁路 卷积神经网络 生成对抗网络 打夯干扰信号
在线阅读 下载PDF
基于类小波辅助分类生成对抗网络的轴承故障数据生成方法
6
作者 焦华超 孙文磊 王宏伟 《中国机械工程》 北大核心 2025年第3期546-557,共12页
利用数据生成方法生成时域特征和频域特征与轴承故障真实信号一致的高质量数据,构建平衡数据集,对数据不平衡情况下建立高效的轴承故障诊断模型具有重要意义。针对现有数据生成方法仅关注时域或频域单一特征的局限,提出了类小波辅助分... 利用数据生成方法生成时域特征和频域特征与轴承故障真实信号一致的高质量数据,构建平衡数据集,对数据不平衡情况下建立高效的轴承故障诊断模型具有重要意义。针对现有数据生成方法仅关注时域或频域单一特征的局限,提出了类小波辅助分类生成对抗网络。基于小波变换原理,使用多层神经网络构建类小波变换(WLT)网络,模拟小波变换及逆变换,建立时域与频域信号的映射关系;将WLT网络嵌入辅助分类生成对抗网络(ACGAN)模型中,作为模型生成器的主体;构建两个不同功能的判别器,使得改进的ACGAN在一次训练中能同时学到真实轴承振动信号的时域和频域特征信息。试验结果表明,WLT-ACGAN模型生成的轴承振动信号具有与真实轴承振动信号一致的时域特征和频域特征,数据不平衡时,利用生成信号扩增的平衡数据集构建的故障诊断模型具有较高的准确率。 展开更多
关键词 辅助分类生成对抗网络 类小波变换 轴承故障诊断 数据生成
在线阅读 下载PDF
基于生成对抗网络修正的源网荷储协同优化调度
7
作者 谢桦 李凯 +3 位作者 郄靖彪 张沛 王珍意 路学刚 《中国电机工程学报》 北大核心 2025年第5期1668-1679,I0003,共13页
大规模风光可再生能源发电并网给电力系统带来强不确定性,使得系统全局优化决策面临挑战,该文提出基于生成对抗网络(generative adversarial networks,GAN)修正的源网荷储协同优化调度策略设计方法。首先,考虑新型电力系统中各类可调节... 大规模风光可再生能源发电并网给电力系统带来强不确定性,使得系统全局优化决策面临挑战,该文提出基于生成对抗网络(generative adversarial networks,GAN)修正的源网荷储协同优化调度策略设计方法。首先,考虑新型电力系统中各类可调节资源的运行特性,构建基于近端策略优化(proximal policy optimization,PPO)算法的源网荷储协同优化调度模型;其次,引入GAN对PPO算法的优势函数进行修正,减少价值函数的方差,提高智能体探索效率;然后,GAN中的判别器结合专家策略指导生成器生成调度策略;最后,判别器与生成器不断对抗寻找纳什均衡点,得到优化调度策略。算例分析表明,设计的源网荷储协同的日内优化调度策略,采用GAN修正的PPO算法,相较于传统的PPO算法缩短了训练过程的收敛时间,在线控制提升了可再生能源消纳能力。 展开更多
关键词 源网荷储协同 生成对抗网络 近端策略优化算法 优化调度 可再生能源消纳
在线阅读 下载PDF
地震属性驱动的条件生成对抗网络沉积微相模型构建
8
作者 刘昕 孙胜 +3 位作者 张立强 蔡明俊 鲁玉 卢文娟 《中国石油大学学报(自然科学版)》 北大核心 2025年第4期1-10,共10页
由于地层结构的复杂性和强非均质性,同时受到测井、岩心、试油等数据不足的影响,现有沉积微相建模方法难以实现精确建模。提出一种基于条件生成对抗网络的沉积微相建模方法,采用灰色关联分析算法,计算各地震属性与砂地比的灰色关联度,... 由于地层结构的复杂性和强非均质性,同时受到测井、岩心、试油等数据不足的影响,现有沉积微相建模方法难以实现精确建模。提出一种基于条件生成对抗网络的沉积微相建模方法,采用灰色关联分析算法,计算各地震属性与砂地比的灰色关联度,挖掘对砂地比参数关联性较强的参数;将优选地震属性图像作为卷积神经网络模型的输入,构建砂地比预测模型,可视化砂地比预测结果,与井相图作为联合约束条件,训练条件生成对抗网络,构建沉积微相生成模型,实现沉积微相的精确建模。应用本方法对东部某油田进行沉积微相建模研究。结果表明,条件生成对抗网络沉积微相模型能精确刻画复杂地质模式,井点吻合率达到94.1%。 展开更多
关键词 条件生成对抗网络 深度学习 沉积微相 砂地比 灰色关联 卷积神经网络
在线阅读 下载PDF
基于改进生成对抗网络和Swin Transformer的样本不均衡轴承故障诊断
9
作者 马良玉 黄日灏 +3 位作者 段晓冲 胡景琛 高海天 马进 《南京信息工程大学学报》 北大核心 2025年第4期528-537,共10页
深度学习由于其强大的特征提取能力被广泛应用于故障诊断领域,但在实际生产过程中,故障样本数量通常远低于正常样本,从而导致故障诊断模型的分类准确率下降.为此,本文提出一种基于改进循环生成对抗网络和Swin Transformer的样本不均衡... 深度学习由于其强大的特征提取能力被广泛应用于故障诊断领域,但在实际生产过程中,故障样本数量通常远低于正常样本,从而导致故障诊断模型的分类准确率下降.为此,本文提出一种基于改进循环生成对抗网络和Swin Transformer的样本不均衡轴承故障诊断方法,并以旋转机械滚动轴承振动故障诊断为例对方法进行验证.首先,将原始振动信号的时频图作为循环生成对抗网络的输入;然后,为克服训练不稳定、模型不能及时收敛等问题,引入谱归一化和权值衰减,利用改进的循环生成对抗网络生成更多的故障样本;最后,采用Swin Transformer模型来进行故障诊断,并与随机森林(RF)、堆叠自编码器(SAE)、支持向量机(SVM)、卷积神经网络(CNN)进行对比.在美国凯斯西储大学(CWRU)轴承故障数据集进行多组不同的故障样本生成与故障诊断实验,结果表明,本文方法可以在训练样本数量较少时生成质量较高的合成样本,与其他方法相比,Swin Transformer模型故障诊断精度更高,在不平衡数据的故障诊断方面具有很大的潜力. 展开更多
关键词 滚动轴承 故障诊断 不平衡样本 循环生成对抗网络 深度学习
在线阅读 下载PDF
基于生成对抗网络与长短时记忆网络的机器人书法系统
10
作者 韩浩 刘佳 《西南大学学报(自然科学版)》 北大核心 2025年第7期231-244,共14页
机器人书法作为工业制造中重要的机器人操纵器应用之一,面临着巨大的挑战,其主动书写机制需要大量包含书写轨迹序列信息的训练数据集,而手动标注这些数据则非常繁琐。为解决这一问题,提出了一种基于生成对抗网络(GAN)和长短时记忆网络(L... 机器人书法作为工业制造中重要的机器人操纵器应用之一,面临着巨大的挑战,其主动书写机制需要大量包含书写轨迹序列信息的训练数据集,而手动标注这些数据则非常繁琐。为解决这一问题,提出了一种基于生成对抗网络(GAN)和长短时记忆网络(LSTM)的机器人书法系统。该书写系统将汉字笔画图像转换为轨迹序列,无须使用笔画轨迹编码信息,克服了传统书写轨迹信息缺失的问题。首先构建了一个生成对抗架构,其中LSTM网络与鉴别器网络结合,以减小训练数据集的规模。然后,LSTM网络通过多个循环逐步生成新的轨迹点,使机器人能够逐渐完成整个汉字书法的书写。最后,利用鉴别器网络评估LSTM网络输出结果来辅助机器人找到最佳策略,并引入强化学习算法来进一步提高系统性能。实验结果证明,所提出的系统能够高效产生高质量的汉字书法。 展开更多
关键词 生成对抗网络 长短时记忆网络 强化学习 汉字书法 机器人书法系统
在线阅读 下载PDF
基于分频式生成对抗网络的非成对水下图像增强
11
作者 牛玉贞 张凌昕 +2 位作者 兰杰 许瑞 柯逍 《电子学报》 北大核心 2025年第2期527-544,共18页
增强水下图像质量对水下作业领域的发展具有重要意义.现有的水下图像增强方法通常基于成对的水下图像和参考图像进行训练,然而实际获取与水下图像对应的参考图像比较困难,相比之下获得非成对高质量水下图像或者陆上图像较为容易.此外,... 增强水下图像质量对水下作业领域的发展具有重要意义.现有的水下图像增强方法通常基于成对的水下图像和参考图像进行训练,然而实际获取与水下图像对应的参考图像比较困难,相比之下获得非成对高质量水下图像或者陆上图像较为容易.此外,现有的水下图像增强方法很难同时针对各种失真类型进行图像增强.为了避免对成对训练数据的依赖和进一步降低获得训练数据的难度,并应对多样的水下图像失真类型,本文提出了一种基于分频式生成对抗网络(Frequency-Decomposed Generative Adversarial Network,FD-GAN)的非成对水下图像增强方法,并在此基础上设计了高低频双分支生成器用于重建高质量水下增强图像.具体来说,本文引入特征级别的小波变换将特征分为低频和高频部分,并基于循环一致性生成对抗网络对低频和高频部分区分处理.其中,低频分支采用结合低频注意力机制的编码-解码器结构实现对图像颜色和亮度的增强,高频分支则采用并行的高频注意力机制对各高频分量进行增强,从而实现对图像细节的恢复.在多个标准水下图像数据集上的实验结果表明,本文提出的方法在使用非成对的高质量水下图像和引入部分陆上图像的情况下,均能有效生成高质量的水下增强图像,且有效性和泛化性均优于当前主流的水下图像增强方法. 展开更多
关键词 水下图像增强 生成对抗网络 小波变换 注意力机制 高低频双分支生成
在线阅读 下载PDF
基于一致损失生成对抗网络的冷水机组故障诊断
12
作者 高学金 吴浩宁 +1 位作者 高慧慧 齐咏生 《仪器仪表学报》 北大核心 2025年第1期285-297,共13页
冷水机组是供暖通风与空气调节系统的重要组成部分,当冷水机组发生故障时将造成能源浪费甚至安全事故。因此,针对冷水机组的故障诊断对于暖通风与空气调节等系统至关重要。基于数据驱动的故障诊断方法依赖大量历史数据,但带标签的故障... 冷水机组是供暖通风与空气调节系统的重要组成部分,当冷水机组发生故障时将造成能源浪费甚至安全事故。因此,针对冷水机组的故障诊断对于暖通风与空气调节等系统至关重要。基于数据驱动的故障诊断方法依赖大量历史数据,但带标签的故障数据往往难以收集,导致模型的诊断准确率下降。为此,提出了一种基于一致损失生成对抗网络(CLGAN)的故障诊断方法。首先,利用少量带标签样本和大量无标签样本训练CLGAN,并生成故障数据;然后,利用生成数据与历史数据构建一个包含各类故障的平衡数据集;最后,利用该数据集训练故障分类器并对冷水机组进行实时诊断。CLGAN通过在判别器中引入一致性损失函数,能够有效利用无标签数据辅助模型训练,提升了数据利用率。同时,CLGAN迫使生成器在多个尺度上满足判别器的要求,这种多维度的反馈机制使得模型在面对扰动时,依然能生成高质量的样本,进而提高故障诊断的准确性和鲁棒性。基于ASHRAE和HY-31C数据集的实验结果表明,在各类别仅有5个带标签样本的情况下,CLGAN分别获得了92.8%和95.9%的故障诊断准确率,展现了良好的故障诊断性能。此外,在噪声和跨工况实验中,CLGAN相比于其他对比方法也展现出了良好的鲁棒性和泛化性。 展开更多
关键词 故障诊断 生成对抗网络 冷水机组 一致损失函数 无标签数据
在线阅读 下载PDF
数字孪生环境下基于生成对抗网络的钻井液流变性能预测方法
13
作者 郭亮 徐行 +3 位作者 刘开勇 姚如钢 唐赛宇 向渝 《钻井液与完井液》 北大核心 2025年第3期359-367,共9页
为了解决实验室中人工测量钻井液流变性能效率低、成本高、稳定性差的问题,提出了数字孪生环境下的基于生成对抗网络的钻井液流变性能预测方法。首先,根据数字孪生五维模型构建了钻井液配制与测量系统的孪生模型,物理配测系统中的传感... 为了解决实验室中人工测量钻井液流变性能效率低、成本高、稳定性差的问题,提出了数字孪生环境下的基于生成对抗网络的钻井液流变性能预测方法。首先,根据数字孪生五维模型构建了钻井液配制与测量系统的孪生模型,物理配测系统中的传感器等信息采集器会收集钻井液流变性能测试实验中的物理实况数据,整合钻井液配方信息和实验测量结果后传输至虚拟空间,建立钻井液流变性能预测数据库;然后,利用改进的生成对抗网络算法,构建钻井液流变性能预测模型。从数据库中抽取钻井液历史孪生数据作为数据集对模型进行训练,得到最佳拟合模型,通过钻井液流变性能预测实验验证模型的预测能力。最终结果表明,模型预测值和真实值之间的相关系数R超过0.96,平均绝对百分比误差AAPE不高于4.1%,模型具有较高的预测精度,能够完成钻井液流变性能预测任务。 展开更多
关键词 数字孪生 生成对抗网络 钻井液 性能预测
在线阅读 下载PDF
基于改进辅助分类生成对抗网络与模型迁移策略结合的故障诊断方法
14
作者 李兴东 向星 +3 位作者 马诗浩 郭雨萱 潘宏鑫 宋明星 《液压与气动》 北大核心 2025年第8期21-34,共14页
液压轴向柱塞泵是液压系统的核心动力元件,对轴向柱塞泵进行故障诊断对于保证液压装备系统的安全可靠性运行至关重要。提出了一种改进的辅助分类生成对抗网络与模型迁移策略相结合的故障诊断方法,构建了故障诊断框架,并采用预训练-微调... 液压轴向柱塞泵是液压系统的核心动力元件,对轴向柱塞泵进行故障诊断对于保证液压装备系统的安全可靠性运行至关重要。提出了一种改进的辅助分类生成对抗网络与模型迁移策略相结合的故障诊断方法,构建了故障诊断框架,并采用预训练-微调策略提高了模型在目标域任务中的泛化能力,解决了传统深度学习诊断方法在实际运行过程中正常数据与故障数据数量因数据不平衡导致效果不佳甚至失效的问题。试验证明,该方法在样本不均衡时,其结构相似性值提高了20.4%,峰值信噪比值提高了5.4%,三种数据集在F1分数评估指标上分别可以达到96.3%、94.4%、92.5%,能够有效提高生产样本的质量和轴向柱塞泵的故障识别率。 展开更多
关键词 数据不平衡 生成对抗网络 残差网络 轴向柱塞泵 故障诊断
在线阅读 下载PDF
基于双重时间卷积网络与生成对抗网络的时序序列异常检测
15
作者 王红霞 牛宇浩 《计量学报》 北大核心 2025年第7期1030-1040,共11页
随着数字制造化产业的发展,数据安全检测、系统监控分析等应用场景中数据量的不断增加,对于数据异常检测的要求日益提高。提出了一种基于双重时间卷积网络与生成对抗网络(GAN)的异常检测(MdtGAN)算法。首先通过生成对抗网络的设计策略... 随着数字制造化产业的发展,数据安全检测、系统监控分析等应用场景中数据量的不断增加,对于数据异常检测的要求日益提高。提出了一种基于双重时间卷积网络与生成对抗网络(GAN)的异常检测(MdtGAN)算法。首先通过生成对抗网络的设计策略构建其基本结构;其次在全局和局部时间卷积网络(GaL-TCN)生成器中通过设计双重时间卷积网络对时间序列进行历史信息处理,其中的注意力机制和单层Transformer编码器使其能够快速地执行知识推理,实现对于时间序列的分布预测使其能够生成符合真实数据分布的时间序列;最后提出基于极值理论的动态阈值设定方法,减少了需要手动调节的参数量以及对于先验知识的需要。实验结果表明,在4个公开数据集上MdtGAN与近几年优秀的基准方法相比,将F1分数平均提高了1.27%,训练时间减少了70.69%,为无监督异常检测提供了一种新的解决方案。 展开更多
关键词 数据处理 生成对抗网络 时间序列 异常检测 双重时间卷积网络 注意力机制 动态阈值
在线阅读 下载PDF
基于超分辨率生成对抗网络的混凝土裂缝检测算法
16
作者 李响 《测绘通报》 北大核心 2025年第3期111-116,共6页
随着服役年限的增长,隧道不可避免会发生老化,作为城市居民出行的重要基础设施,保障其安全是至关重要的。目前多通过相机拍摄的图像识别隧道表面的裂缝病害,然而裂缝在图像中的像素占比小,其检测过程耗时费力,急需一种能够在大视场范围... 随着服役年限的增长,隧道不可避免会发生老化,作为城市居民出行的重要基础设施,保障其安全是至关重要的。目前多通过相机拍摄的图像识别隧道表面的裂缝病害,然而裂缝在图像中的像素占比小,其检测过程耗时费力,急需一种能够在大视场范围内精准检测裂缝的方法。因此,本文首先提出了一种基于超分辨率生成对抗网络的学习结构,适用于任何分割网络,然后提出了一种有效构建训练数据的方法,应用于所提出的学习结构,最后对本文方法在1606张质量随机退化的裂缝图像上进行了性能评估,结果表明,本文所提出的学习结构下,裂缝检测IoU及F1分数分别达63.686%和77.811%,方差分别为0.9008和0.5015,有效提高了裂缝的检测性能,且对输入数据具有较高的稳健性。 展开更多
关键词 混凝土隧道 裂缝检测 超分辨率生成对抗网络 分割算法
在线阅读 下载PDF
基于生成对抗网络与渐进式融合的多模态实体对齐
17
作者 冯广 郑润庭 +6 位作者 刘天翔 杨燕茹 林健忠 钟婷 黄荣灿 项峰 李伟辰 《计算机应用研究》 北大核心 2025年第6期1632-1640,共9页
在教育领域中,知识图谱融合起着关键的作用。作为知识图谱融合的一个核心技术,实体对齐的目标是从多个知识图谱中识别等价的实体对。目前实体对齐方法大部分建立在假设源实体在目标知识图谱中有对应实体的基础上,当使用跨语言与跨图谱... 在教育领域中,知识图谱融合起着关键的作用。作为知识图谱融合的一个核心技术,实体对齐的目标是从多个知识图谱中识别等价的实体对。目前实体对齐方法大部分建立在假设源实体在目标知识图谱中有对应实体的基础上,当使用跨语言与跨图谱实体集时就会产生悬挂实体问题。针对该问题,提出双生成器参数共享对抗网络实体对齐模型DGSAN-EA。该模型采用参数部分共享和择优策略训练双生成器,选择最优生成器用于条件生成跨知识图谱的新实体,达到增强数据集的目的,以解决悬挂实体问题。接下来,采取渐进式融合策略和引入分布一致性损失函数,有效解决多模态实体对齐中融合特征信息失真及模态间不对齐的问题。在多个公开数据集上进行验证,实验表明,与现有的多模态实体对齐模型相比,DGSANEA在hit@k和MMR得分整体都有提高,证明了其在实体对齐任务中的有效性。 展开更多
关键词 知识图谱 实体对齐 对抗网络 生成 参数共享 渐进式融合 分布一致性
在线阅读 下载PDF
基于可解释性条件生成对抗网络的台风气象负荷场景生成方法 被引量:3
18
作者 罗萍萍 盛奥 +3 位作者 林济铿 马骞 许琴 刘一鸣 《电力系统自动化》 北大核心 2025年第2期186-197,共12页
台风气象下电网负荷将会出现剧烈波动且威胁到电网安全稳定运行,亟需一种有效的方法来生成相应的负荷需求场景。文中提出一种面向稀少历史样本、基于可解释性条件生成对抗网络(CGAN)的台风负荷场景生成方法。首先,对历史台风负荷进行修... 台风气象下电网负荷将会出现剧烈波动且威胁到电网安全稳定运行,亟需一种有效的方法来生成相应的负荷需求场景。文中提出一种面向稀少历史样本、基于可解释性条件生成对抗网络(CGAN)的台风负荷场景生成方法。首先,对历史台风负荷进行修正,并根据台风登陆位置、等级等信息对其进行标签分类。然后,提出一种两阶段数据扩充策略以应对数据匮乏问题,第1阶段利用历史台风日负荷序列之间的横纵向相关性信息进行样本扩充,第2阶段利用台风日与非台风日负荷之间的残差信息进一步进行样本扩充。最后,提出基于特征影响指标的CGAN因果解释方法,刻画了不同特征对于模型结果的调控力度大小。算例证实了文中所提模型及方法的有效性和先进性。 展开更多
关键词 台风气象 人工智能 负荷需求 场景生成 可解释性 条件生成对抗网络
在线阅读 下载PDF
基于生成对抗网络的抗裁剪图像隐写方法 被引量:1
19
作者 徐石穿 徐洋 张思聪 《现代电子技术》 北大核心 2025年第3期81-86,共6页
现有的图像隐写方法大多数都聚焦在增加隐写容量和提升载密图像的不可检测性上,对于载密图像在遭受裁剪后信息提取完整性的研究相对较少。为解决载密图像遭受裁剪后无法恢复信息的问题,文中为图像隐藏任务提出一种基于生成对抗网络的抗... 现有的图像隐写方法大多数都聚焦在增加隐写容量和提升载密图像的不可检测性上,对于载密图像在遭受裁剪后信息提取完整性的研究相对较少。为解决载密图像遭受裁剪后无法恢复信息的问题,文中为图像隐藏任务提出一种基于生成对抗网络的抗裁剪图像隐写方法。该方法基于生成对抗网络构建一个编码⁃解码网络,被命名为ACIS。通过在网络结构中增加评价器,让评价器与编码器进行对抗训练,使得编码器生成的载密图像更具有真实性,并提高载密图像抗隐写分析能力。同时,在训练过程中通过添加噪声层模拟现实传输过程中遇到的图像裁剪攻击,以提高载密图像的鲁棒性,提升解码器的解码准确率。为减少梯度消失问题带来的影响,使用DenseNet连接并对ACIS网络结构进行调整以提升解码准确率。实验结果表明,ACIS生成的载密图像在被裁剪掉20%的区域后,仍有70%以上的载密图像能完整恢复出隐藏信息。同时,该方法还能保持较大的隐写容量(最高可达到1.37 bpp),是传统方法0.2~0.4 bpp容量的3~6倍,而且图像质量高,对于通用的隐写分析工具也有很好的隐蔽性。 展开更多
关键词 图像隐写术 抗裁剪 生成对抗网络 信息隐藏 自适应 DenseNet连接
在线阅读 下载PDF
基于生成对抗网络的人脸属性合成技术综述 被引量:1
20
作者 王健强 张珂 李培杰 《计算机应用研究》 北大核心 2025年第3期650-662,共13页
人脸属性合成技术旨在保留人脸面部图像身份信息的情况下,根据指定目标重建人脸属性,从而在源图像上合成具有全新属性的人脸。计算机视觉技术的发展为人脸属性合成技术提供了全新的解决方案。为此,从人脸属性合成数据集、传统和生成对... 人脸属性合成技术旨在保留人脸面部图像身份信息的情况下,根据指定目标重建人脸属性,从而在源图像上合成具有全新属性的人脸。计算机视觉技术的发展为人脸属性合成技术提供了全新的解决方案。为此,从人脸属性合成数据集、传统和生成对抗网络(GAN)的合成网络以及人脸语义方面综述了人脸属性合成技术的发展。首先分析了人脸属性合成领域中传统方法和主流的深度学习方法,探讨基于GAN方法的发展现状,将基于GAN的人脸属性合成模型划分为有监督、无监督以及半监督三种,将人脸属性划分年龄、表情和妆容三大类语义,并对多种合成模型进行深入研究。其次,对典型的损失函数进行分析和总结,同时介绍了常用人脸属性数据集以及评价指标。最后介绍现有人脸属性合成方法面临的问题,并对该领域未来的发展提出展望。 展开更多
关键词 深度学习 生成对抗网络 人脸属性生成 人脸图像数据集 年龄 表情 妆容
在线阅读 下载PDF
上一页 1 2 124 下一页 到第
使用帮助 返回顶部