期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于分类时序生成对抗插补网络的可解释配电网拓扑辨识
1
作者 苏鑫 颜伟 +1 位作者 张栩 谭洪 《天津大学学报(自然科学与工程技术版)》 北大核心 2025年第7期704-715,共12页
有源配电网的量测噪声和通讯故障会导致量测数据缺乏精确性和完整性,而深度学习模型应用于配电网拓扑辨识又存在“黑盒”模型导致的可信度偏低问题.为了解决这些问题,提出了一种基于分类时序生成对抗插补网络(CTGAIN)的可解释配电网拓... 有源配电网的量测噪声和通讯故障会导致量测数据缺乏精确性和完整性,而深度学习模型应用于配电网拓扑辨识又存在“黑盒”模型导致的可信度偏低问题.为了解决这些问题,提出了一种基于分类时序生成对抗插补网络(CTGAIN)的可解释配电网拓扑辨识方法.该方法采用节点注入功率伪量测和局部电流向量的时序量测数据,设计了由两个级联的神经网络构成的CTGAIN.其基于双向循环GRU(Bi-GRU)构建生成器,并利用序列数据的前向和后向信息结合缺失掩码进行缺失值插补;基于Transformer构建判别器,通过多头注意力机制对生成器的插补结果进行拓扑辨识与缺失掩码预测;再通过复合损失函数对CTGAIN进行联合优化,从而在保持插补精度的同时提升拓扑辨识的准确性.此外,在Transformer中引入双重注意力机制和多标签积分梯度,实现了拓扑状态关联特征的重要性评价与解释.其中,双重注意力机制实时优化注意力权重,动态衡量特征重要性;积分梯度则通过累积特征梯度,精准识别与开关状态相关的重要特征.最后,对修改后的IEEE 33节点和69节点算例进行仿真实验.在不同噪声水平下,其相较次佳模型辨识正确率平均提高了3%;在量测特征值随机缺失50%时,其能保持95%以上的辨识正确率;在分布式电源(DER)渗透率为70%的情况下,其能保持90%以上的辨识正确率.实验结果验证了该方法对不同噪声水平、不同量测特征值缺失和不同比例的分布式电源渗透率的适应性. 展开更多
关键词 配电网 拓扑辨识 时序生成对抗插补网络 可解释
在线阅读 下载PDF
基于条件生成对抗插补网络的双重判别器缺失值插补算法
2
作者 粟佳 于洪 《计算机应用》 CSCD 北大核心 2024年第5期1423-1427,共5页
应用中的各种因素可能造成数据缺失,影响后续任务的分析。因此,数据集缺失值的插补尤为重要。相比原本没有插补的处理,错误的插补值也会对分析造成更严重的偏差。针对这种情况,提出新的采用双重判别器的基于条件生成对抗插补网络(C-GAIN... 应用中的各种因素可能造成数据缺失,影响后续任务的分析。因此,数据集缺失值的插补尤为重要。相比原本没有插补的处理,错误的插补值也会对分析造成更严重的偏差。针对这种情况,提出新的采用双重判别器的基于条件生成对抗插补网络(C-GAIN)的缺失值插补算法DDC-GAIN(Dual Discriminator based on C-GAIN)。该算法通过一个辅助判别器辅助主判别器判断预测值的真假,即根据一个样本的全局信息判断这个样本生成的真假,更注重特征之间的关系,以此估算预测值。在4个数据集上与5种经典插补算法进行对比实验,结果表明:同样条件下,DDC-GAIN算法在样本量较大时的均方根误差(RMSE)最低;在Default credit card数据集上缺失率为15%时,DDC-GAIN算法的RMSE比次优算法C-GAIN降低了28.99%。这说明利用辅助判别器帮助主判别器学习特征之间的关系是有效的。 展开更多
关键词 条件生成对抗插补网络 缺失值 不完备性 特征关系 双重判别器
在线阅读 下载PDF
Conv-WGAIN:面向多元时序数据缺失的卷积生成对抗插补网络模型
3
作者 刘子建 丁维龙 +2 位作者 邢梦达 李寒 黄晔 《计算机工程与科学》 CSCD 北大核心 2023年第5期931-939,共9页
油浸式变压器的油色谱数据是一种多元时序传感数据,设备或网络失误往往会导致数据缺失,通常需要通过插补形成完整数据集,才能用于进一步的业务分析研究。但是,现有的插补模型无法面向多元时序数据同时处理因时间不均匀性和时间双向性带... 油浸式变压器的油色谱数据是一种多元时序传感数据,设备或网络失误往往会导致数据缺失,通常需要通过插补形成完整数据集,才能用于进一步的业务分析研究。但是,现有的插补模型无法面向多元时序数据同时处理因时间不均匀性和时间双向性带来的插补效率低和效果难以保障的问题,对此提出一种名为Conv-WGAIN的生成对抗插补网络模型,通过构建的插补特征图,可利用二维卷积从前后2个方向学习时间特征,处理时间间隔不均匀的数据;在判别器中引入Wasserstein距离来判别生成插补数据与真实观测数据,提升了生成器的稳定性。在真实项目中的油色谱数据集和3个公开数据集上的实验表明,该模型在多元时序缺失数据上具有普遍适用性,而且在不同的缺失率下的插补结果要优于其他对比模型的,RMSE降低了20.75%~73.37%。 展开更多
关键词 生成对抗插补网络 多元时序数据 卷积神经网络 Wasserstein距离 缺失值
在线阅读 下载PDF
无监督缺失值预测的运动目标检测算法
4
作者 傅饶 房建东 赵于东 《计算机工程与应用》 CSCD 北大核心 2024年第4期220-228,共9页
针对运动目标检测过程中由于背景复杂、目标易发生遮挡而产生的漏检问题,提出一种基于无监督缺失值预测的运动目标检测算法。将漏检的目标视为标签数据中的缺失值,根据待检测目标的类别和数量,利用无监督的生成对抗插补网络(generative ... 针对运动目标检测过程中由于背景复杂、目标易发生遮挡而产生的漏检问题,提出一种基于无监督缺失值预测的运动目标检测算法。将漏检的目标视为标签数据中的缺失值,根据待检测目标的类别和数量,利用无监督的生成对抗插补网络(generative adversarial imputation networks,GAIN),通过已获取的标签数据对缺失值进行预测,以牺牲较少的精确率为代价大幅提高召回率。在小样本的牛只特征部位数据集上的实验结果表明,在标签数据缺失率低于40%的情况下,缺失值预测的准确率约为95%,对于不同程度的被遮挡目标,检测的平均F1分数为0.92。该方法在小样本条件下,对运动目标具有较好的检测性能,可减小实际应用中的不确定性,以及算法对样本数据的依赖性,改善运动目标检测过程中的漏检问题。 展开更多
关键词 小样本 无监督学习 生成对抗插补网络 缺失值预测 运动目标检测
在线阅读 下载PDF
数据缺失下SGAIN融合TCN预测滚动轴承剩余寿命
5
作者 刘静涛 邱明 +2 位作者 李军星 刘志卫 高锐 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期240-247,共8页
由于网络传输故障和传感器漏读会引起数据缺失问题。为了在数据缺失条件下能够较准确地预测滚动轴承使用寿命,论文给出了一种将精简生成对抗插补网络(SGAIN)与时间卷积网络(TCN)相融合的剩余寿命预测(RUL)方法。首先,通过SGAIN算法学习... 由于网络传输故障和传感器漏读会引起数据缺失问题。为了在数据缺失条件下能够较准确地预测滚动轴承使用寿命,论文给出了一种将精简生成对抗插补网络(SGAIN)与时间卷积网络(TCN)相融合的剩余寿命预测(RUL)方法。首先,通过SGAIN算法学习缺失数据集的分布规律,掌握已有数据和缺失数据的关联,对缺失数据进行插补填充。其次,使用TCN网络建立轴承寿命预测模型,运用插补完成的数据集实现数据缺失下滚动轴承的剩余寿命预测。最后,借助于公开数据集将SGAIN插补方法与其他插补方法进行对比,揭示了SGAIN插补方法的优越性。同时,选择20%缺失率下的轴承缺失数据做出预测,插补后寿命预测结果的得分达到了0.7222,与缺失未插补数据的预测结果的得分0.5425相比提高了0.1797,接近原始数据寿命预测结果的得分0.7552。这说明了SGAIN融合TCN的滚动轴承剩余寿命预测方法是有效的。 展开更多
关键词 滚动轴承 数据缺失 精简对抗生成网络 时间卷积网络 寿命预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部