期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于聚类和生成对抗学习模型的滤波器剪枝
1
作者 冯叶棋 张俊三 +1 位作者 邵明文 张世栋 《计算机应用与软件》 北大核心 2024年第1期253-260,共8页
深度神经网络过深的网络架构和冗余的参数会导致昂贵的计算成本,近年来深度神经网络的压缩与加速已成为研究热点。针对现有方法的范数准则局限性以及标签依赖问题,提出一种基于聚类中心和生成对抗学习的结构化滤波器剪枝方法(FPCC-GAN)... 深度神经网络过深的网络架构和冗余的参数会导致昂贵的计算成本,近年来深度神经网络的压缩与加速已成为研究热点。针对现有方法的范数准则局限性以及标签依赖问题,提出一种基于聚类中心和生成对抗学习的结构化滤波器剪枝方法(FPCC-GAN):使用K-means聚类算法按卷积层将滤波器逐层聚类;比例化修剪各簇内离聚类中心较近的提取冗余特征的滤波器;使用生成对抗学习迭代训练。实验结果分析表明,与当前主流方法相比,该方法具有更高的准确率。 展开更多
关键词 网络压缩 深度神经网络加速 参数剪枝 聚类 生成对抗学习
在线阅读 下载PDF
基于嵌套生成对抗学习的网络嵌入
2
作者 沈鹏飞 徐臻 王英 《电子学报》 EI CAS CSCD 北大核心 2022年第9期2155-2163,共9页
当前网络嵌入研究更多关注信息网络结构和结点之间一阶或高阶近似关系,对于网络结点自身属性考虑较少.本文提出一种嵌套的生成对抗网络模型N-GAN(Nesting Generative Adversarial Networks for Network Embed⁃ding),实现了网络结构和节... 当前网络嵌入研究更多关注信息网络结构和结点之间一阶或高阶近似关系,对于网络结点自身属性考虑较少.本文提出一种嵌套的生成对抗网络模型N-GAN(Nesting Generative Adversarial Networks for Network Embed⁃ding),实现了网络结构和节点属性同时嵌入到低维向量,从而最大程度保存原始高维信息网络特征.N-GAN模型设计灵活,具有很好的延伸性和扩张性,并在真实数据上验证了N-GAN的性能及其稳定性,其嵌入的低维表示在不同应用中表现出不错的性能. 展开更多
关键词 数据挖掘 网络嵌入 生成对抗学习 信息网络
在线阅读 下载PDF
基于生成对抗模仿学习的路段非机动车行为仿真
3
作者 魏书樵 倪颖 +1 位作者 孙剑 邱红桐 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第4期105-115,共11页
为精准复现路段非机动车干扰行为,满足自动驾驶仿真测试需求,本文提出一种位置奖励增强的生成对抗模仿学习(Position Reward Augmented Generative Adversarial Imitation Learning,PRA-GAIL)方法训练仿真模型。城市道路中,干扰行为主... 为精准复现路段非机动车干扰行为,满足自动驾驶仿真测试需求,本文提出一种位置奖励增强的生成对抗模仿学习(Position Reward Augmented Generative Adversarial Imitation Learning,PRA-GAIL)方法训练仿真模型。城市道路中,干扰行为主要由电动自行车产生,故以电动自行车作为研究对象。在构建的仿真环境中,使用生成对抗模仿学习(GAIL)更新仿真模型使仿真轨迹逐步逼近真实轨迹,同时加入位置奖励与Lagrangian约束方法以解决现有仿真方法中的均质化和行为不可控的问题。结果表明:在测试集表现上,GAIL和PRA-GAIL方法平均每步长距离误差相比于常用的行为克隆方法下降了61.7%和65.8%。在行为层仿真精度上,与GAIL相比,PRAGAIL的加速度分布与真实分布间的KL散度显著降低,越线、超车数量的百分比误差下降了7.2%和20.2%。使用Lagrangian方法添加安全约束使有危险行为的智能体数量相比于常用的奖励增强方法下降了75.8%。在轨迹层仿真精度上,整体仿真环境下,PRA-GAIL的平均每步长距离误差相比于GAIL下降了17.5%。本文模型真实再现了非机动车超车时的操作空间,说明PRAGAIL方法对非机动车行为仿真有良好的适用性。本文提出的改动有效提升了仿真效果,最终所得的仿真模型能够真实地再现路段非机动车的干扰行为,能够应用于自动驾驶仿真测试。 展开更多
关键词 交通工程 非机动车行为 强化学习 生成对抗模仿学习 自动驾驶测试 微观交通仿真
在线阅读 下载PDF
基于多源域对抗迁移学习的可穿戴情绪识别技术 被引量:4
4
作者 邹永攀 王丹阳 +5 位作者 王丹 郑灿林 宋奇峰 朱毓正 范长河 伍楷舜 《计算机学报》 EI CSCD 北大核心 2024年第2期266-286,共21页
情绪影响身心健康及认知功能等,因而在人们的生活中扮演着重要角色.自动情绪识别有助于预警心理疾病和探索行为机制,具有巨大的研究与应用价值.在过去十余年中,研究者们提出了各种情绪识别方法,但均存在不同方面的不足:基于脑电图(Elect... 情绪影响身心健康及认知功能等,因而在人们的生活中扮演着重要角色.自动情绪识别有助于预警心理疾病和探索行为机制,具有巨大的研究与应用价值.在过去十余年中,研究者们提出了各种情绪识别方法,但均存在不同方面的不足:基于脑电图(Electroencephalography,EEG)信号的方法需采用专业、昂贵且不易操作的脑电仪;基于视觉和语音的方法存在隐私泄露的风险;基于手机使用模式分析的方法其可靠性和准确性有待提高等.本文利用生理信号如呼吸音、心跳音及脉搏等与情绪的潜在关联性,创新性地提出基于低成本、普适易用可穿戴硬件的情绪识别技术,借助多模态数据融合对不同类型数据进行有效利用,既减少了数据冗余又有效提升了系统性能.此外,在保证良好识别准确率的前提下,为提升情绪识别模型对不同用户的泛化性、最大化降低新用户的使用成本,本文提出了基于多源域对抗思想的情绪识别模型,借助少量来自新用户的无标签数据实现模型的无监督迁移,再辅之以极少量有标签数据微调分类器参数可进一步提升情绪识别准确率.为验证所提情绪识别方法的有效性,本文设计并实现了一套融合麦克风与光电容积脉搏波(Photoplethysmography,PPG)传感器以测量人体心跳音、呼吸音及脉搏等生理指征的可穿戴系统.基于此系统,本文在不同设置下开展了大量实验并对不同影响因素进行了评估.实验结果表明:对于四类基本情绪,本文所提方法单被试识别准确率可达95.0%,跨被试识别准确率为62.5%,比基准方法提升了5.3%.结合有监督小样本参数微调,识别准确率可进一步提高至81.1%,比基准方法提高了12.4%.上述结果验证了本文所提方法的可行性,为泛在情绪识别研究做出了崭新的探索. 展开更多
关键词 可穿戴设备 情绪识别 多模态数据 迁移学习 域迁移 生成对抗学习
在线阅读 下载PDF
基于生成对抗网络的模仿学习综述 被引量:24
5
作者 林嘉豪 章宗长 +1 位作者 姜冲 郝建业 《计算机学报》 EI CSCD 北大核心 2020年第2期326-351,共26页
模仿学习研究如何从专家的决策数据中进行学习,以得到接近专家水准的决策模型.同样学习如何决策的强化学习往往只根据环境的评价式反馈进行学习,与之相比,模仿学习能从决策数据中获得更为直接的反馈.它可以分为行为克隆、基于逆向强化... 模仿学习研究如何从专家的决策数据中进行学习,以得到接近专家水准的决策模型.同样学习如何决策的强化学习往往只根据环境的评价式反馈进行学习,与之相比,模仿学习能从决策数据中获得更为直接的反馈.它可以分为行为克隆、基于逆向强化学习的模仿学习两类方法.基于逆向强化学习的模仿学习把模仿学习的过程分解成逆向强化学习和强化学习两个子过程,并反复迭代.逆向强化学习用于推导符合专家决策数据的奖赏函数,而强化学习基于该奖赏函数来学习策略.基于生成对抗网络的模仿学习方法从基于逆向强化学习的模仿学习发展而来,其中最早出现且最具代表性的是生成对抗模仿学习方法(Generative Adversarial Imitation Learning,简称GAIL).生成对抗网络由两个相对抗的神经网络构成,分别为判别器和生成器.GAIL的特点是用生成对抗网络框架求解模仿学习问题,其中,判别器的训练过程可类比奖赏函数的学习过程,生成器的训练过程可类比策略的学习过程.与传统模仿学习方法相比,GAIL具有更好的鲁棒性、表征能力和计算效率.因此,它能够处理复杂的大规模问题,并可拓展到实际应用中.然而,GAIL存在着模态崩塌、环境交互样本利用效率低等问题.最近,新的研究工作利用生成对抗网络技术和强化学习技术等分别对这些问题进行改进,并在观察机制、多智能体系统等方面对GAIL进行了拓展.本文先介绍了GAIL的主要思想及其优缺点,然后对GAIL的改进算法进行了归类、分析和对比,最后总结全文并探讨了可能的未来趋势. 展开更多
关键词 模仿学习 基于生成对抗网络的模仿学习 生成对抗模仿学习 模态崩塌 样本利用效率
在线阅读 下载PDF
基于混合模仿学习的多智能体追捕决策方法
6
作者 王焱宁 张锋镝 +1 位作者 肖登敏 孙中奇 《计算机科学》 北大核心 2025年第1期323-330,共8页
针对传统模仿学习方法在处理多样化专家轨迹时的局限性,尤其是难以有效整合质量参差不齐的固定模态专家数据的问题,创新性地融合了多专家轨迹生成对抗模仿学习(Multiple Trajectories Generative Adversarial Imitation Learning, MT-GA... 针对传统模仿学习方法在处理多样化专家轨迹时的局限性,尤其是难以有效整合质量参差不齐的固定模态专家数据的问题,创新性地融合了多专家轨迹生成对抗模仿学习(Multiple Trajectories Generative Adversarial Imitation Learning, MT-GAIL)方法与时序差分误差行为克隆(Temporal-Difference Error Behavioral Cloning, TD-BC)技术,构建了一种混合模仿学习框架。该框架不仅可以增强模型对复杂多变的专家策略的适应能力,还能够提升模型从低质量数据中提炼有用信息的鲁棒性。框架得到的模型具备直接应用于强化学习的能力,仅需经过细微的调整与优化,即可训练出一个直接可用的、基于专家经验的强化学习模型。在二维动静结合的目标追捕场景中进行了实验验证,该方法展现出良好的性能。结果表明,所提方法可以吸取专家经验,为后续的强化学习训练阶段提供一个起点高、效果佳的初始模型。 展开更多
关键词 智能决策 强化学习 行为克隆 生成对抗模仿学习
在线阅读 下载PDF
结合对抗互信息的多变量时间序列抗噪异常检测 被引量:1
7
作者 张本初 乔焰 胡荣耀 《计算机应用研究》 CSCD 北大核心 2024年第8期2384-2391,共8页
近年来,对多变量时间序列的异常检测在各领域中逐渐突显出其重要性。然而,由于多变量时间序列的时空依赖性以及采集所存在的噪声干扰,使得模型学习到的分布与真实分布存在一定的偏差,进而影响检测性能。为了解决以上问题,提出一种结合... 近年来,对多变量时间序列的异常检测在各领域中逐渐突显出其重要性。然而,由于多变量时间序列的时空依赖性以及采集所存在的噪声干扰,使得模型学习到的分布与真实分布存在一定的偏差,进而影响检测性能。为了解决以上问题,提出一种结合对抗互信息的多变量时间序列抗噪异常检测模型(RADAM)。通过设计对比学习机制来达到多变量时间序列全局信息和局部信息的互信息最大化,以此来学习多变量时间序列的时间与空间依赖性;利用自适应权重和过滤器模块减少噪声样本对于训练过程的干扰,使模型在训练过程中具备较高的抗噪能力。在五个真实数据集上与六个先进的同类异常检测方法进行了对比实验,实验结果证明RADAM性能明显优于其他基线模型,说明RADAM能显著提升在包含噪声的多变量时间序列数据集上异常检测的准确度。 展开更多
关键词 多变量时间序列 抗噪异常检测 生成对抗学习 对比学习 互信息最大化
在线阅读 下载PDF
融合CNN和二进制生成对抗网络的多元时间序列检索 被引量:1
8
作者 汤丽君 关东海 +2 位作者 汪子璇 袁伟伟 燕雪峰 《小型微型计算机系统》 CSCD 北大核心 2023年第2期281-287,共7页
多元时间序列在日常生活中普遍存在,给定当前的时间序列片段,如何高效且精确地从历史时间片段中找出其相似的时间片段极为重要.本文提出了一种全新的基于CNN和深度非监督二进制生成对抗网络(UCBGAN)来进行多元时间序列检索,它可以有效... 多元时间序列在日常生活中普遍存在,给定当前的时间序列片段,如何高效且精确地从历史时间片段中找出其相似的时间片段极为重要.本文提出了一种全新的基于CNN和深度非监督二进制生成对抗网络(UCBGAN)来进行多元时间序列检索,它可以有效地获取多元时间序列的二进制表示.该网络由3部分构成—一个解码器,一个编码器和一个鉴别器,其中鉴别器和编码器除了最后一层外,共享参数.此外,本文引入了时序相似矩阵,通过构建时序相似矩阵,能进一步提高二进制编码的可鉴别性.在训练过程中,本文引入了对抗损失,相似对损失和重构损失.在多个数据集上的实验结果表明,该方法能有效提高多元时间序列检索的准确度.所以,该方法对于多元时间序列检索是有效的. 展开更多
关键词 多元时间序列检索 非监督学习 二进制编码 卷积神经网络 生成对抗学习
在线阅读 下载PDF
基于GAIL方法的鱼类个体运动策略恢复方法
9
作者 宋婧菡 陈鹏宇 +4 位作者 徐俊 岳圣智 闵中原 刘晓阳 林远山 《现代电子技术》 北大核心 2025年第13期138-144,共7页
针对强化学习在鱼群行为策略中存在没有摆脱规则的限制、奖励函数依赖于先验规则、无法完全刻画物体行为策略的局限性,文中提出一种基于生成对抗模仿学习(GAIL)的方法,从鱼类集群运动轨迹数据中恢复个体运动轨迹策略。设计鱼类个体的状... 针对强化学习在鱼群行为策略中存在没有摆脱规则的限制、奖励函数依赖于先验规则、无法完全刻画物体行为策略的局限性,文中提出一种基于生成对抗模仿学习(GAIL)的方法,从鱼类集群运动轨迹数据中恢复个体运动轨迹策略。设计鱼类个体的状态和动作表示,利用全连接神经网络表达鱼类个体运动的决策过程,并在实验中使用一个学习者及多个使用Vicsek模型导航的教师个体进行验证。实验结果表明,GAIL方法能够有效恢复鱼类个体的轨迹行为策略,提供了一种高效的策略学习途径,能够应用于其他生物集群行为的研究和模拟。通过对集群行为的深入分析,揭示了个体间的互动规律和群体动态,为人工智能在生物行为研究中的应用提供了新的思路。 展开更多
关键词 生成对抗模仿学习 鱼类集群行为 运动策略恢复 人工智能应用 Vicsek模型 全连接神经网络
在线阅读 下载PDF
基于对抗域适应的红外舰船目标分割 被引量:4
10
作者 高子航 刘兆英 +1 位作者 张婷 李玉鑑 《数据采集与处理》 CSCD 北大核心 2023年第3期598-607,共10页
为了提高红外舰船目标的分割准确率,提出一种基于对抗域适应的红外舰船目标分割方法,其中有标注的可见光舰船图像为源域,没有标注的红外舰船图像为目标域。为了解决两个域之间的风格差异问题,本文依次对源域的可见光图像进行灰度化和白... 为了提高红外舰船目标的分割准确率,提出一种基于对抗域适应的红外舰船目标分割方法,其中有标注的可见光舰船图像为源域,没有标注的红外舰船图像为目标域。为了解决两个域之间的风格差异问题,本文依次对源域的可见光图像进行灰度化和白化预处理,将其转换为具有目标域风格的图像。对于目标域的红外图像,使用去噪网络进行优化;接着,为了解决判别网络视野受限问题,设计基于空洞卷积的判别网络;最后,针对目标域预测图像置信度低问题,将目标域预测图像的信息熵加入到对抗损失中。在可见光和红外舰船图像组成的数据集上的实验结果高于现有方法,证明了本文方法的有效性。 展开更多
关键词 域适应 目标分割 生成对抗学习 红外舰船图像 信息熵
在线阅读 下载PDF
逆向强化学习研究综述 被引量:2
11
作者 张立华 刘全 +1 位作者 黄志刚 朱斐 《软件学报》 EI CSCD 北大核心 2023年第10期4772-4803,共32页
逆向强化学习(inverse reinforcement learning,IRL)也称为逆向最优控制(inverse optimal control,IOC),是强化学习和模仿学习领域的一种重要研究方法,该方法通过专家样本求解奖赏函数,并根据所得奖赏函数求解最优策略,以达到模仿专家... 逆向强化学习(inverse reinforcement learning,IRL)也称为逆向最优控制(inverse optimal control,IOC),是强化学习和模仿学习领域的一种重要研究方法,该方法通过专家样本求解奖赏函数,并根据所得奖赏函数求解最优策略,以达到模仿专家策略的目的.近年来,逆向强化学习在模仿学习领域取得了丰富的研究成果,已广泛应用于汽车导航、路径推荐和机器人最优控制等问题中.首先介绍逆向强化学习理论基础,然后从奖赏函数构建方式出发,讨论分析基于线性奖赏函数和非线性奖赏函数的逆向强化学习算法,包括最大边际逆向强化学习算法、最大熵逆向强化学习算法、最大熵深度逆向强化学习算法和生成对抗模仿学习等.随后从逆向强化学习领域的前沿研究方向进行综述,比较和分析该领域代表性算法,包括状态动作信息不完全逆向强化学习、多智能体逆向强化学习、示范样本非最优逆向强化学习和指导逆向强化学习等.最后总结分析当前存在的关键问题,并从理论和应用方面探讨未来的发展方向. 展开更多
关键词 逆向强化学习 模仿学习 生成对抗模仿学习 逆向最优控制 强化学习
在线阅读 下载PDF
基于余弦相似度的多模态模仿学习方法 被引量:9
12
作者 郝少璞 刘全 +2 位作者 徐平安 张立华 黄志刚 《计算机研究与发展》 EI CSCD 北大核心 2023年第6期1358-1372,共15页
生成对抗模仿学习(generative adversarial imitation learning,GAIL)是一种基于生成对抗框架的逆向强化学习(inverse reinforcement learning,IRL)方法,旨在从专家样本中模仿专家策略.在实际任务中,专家样本往往由多模态策略产生.然而... 生成对抗模仿学习(generative adversarial imitation learning,GAIL)是一种基于生成对抗框架的逆向强化学习(inverse reinforcement learning,IRL)方法,旨在从专家样本中模仿专家策略.在实际任务中,专家样本往往由多模态策略产生.然而,现有的GAIL方法大部分假设专家样本产自于单一模态策略,导致生成对抗模仿学习只能学习到部分模态策略,即出现模式塌缩问题,这极大地限制了模仿学习方法在多模态任务中的应用.针对模式塌缩问题,提出了基于余弦相似度的多模态模仿学习方法(multi-modal imitation learning method with cosine similarity,MCS-GAIL).该方法引入编码器和策略组,通过编码器提取专家样本的模态特征,计算采样样本与专家样本之间特征的余弦相似度,并将其加入策略组的损失函数中,引导策略组学习对应模态的专家策略.此外,MCS-GAIL使用新的极小极大博弈公式指导策略组以互补的方式学习不同模态策略.在假设条件成立的情况下,通过理论分析证明了MCS-GAIL的收敛性.为了验证方法的有效性,将MCS-GAIL用于格子世界和MuJoCo平台上,并与现有模式塌缩方法进行比较.实验结果表明,MCS-GAIL在所有环境中均能有效学习到多个模态策略,且具有较高的准确性和稳定性. 展开更多
关键词 逆向强化学习 生成对抗模仿学习 多模态 模式塌缩 余弦相似度
在线阅读 下载PDF
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder 被引量:1
13
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 Intrusion detection Noise-Reducing autoencoder Generative adversarial networks Integrated learning
在线阅读 下载PDF
小目标检测研究进展 被引量:60
14
作者 高新波 莫梦竟成 +1 位作者 汪海涛 冷佳旭 《数据采集与处理》 CSCD 北大核心 2021年第3期391-417,共27页
小目标检测长期以来是计算机视觉中的一个难点和研究热点。在深度学习的驱动下,小目标检测已取得了重大突破,并成功应用于国防安全、智能交通和工业自动化等领域。为了进一步促进小目标检测的发展,本文对小目标检测算法进行了全面的总结... 小目标检测长期以来是计算机视觉中的一个难点和研究热点。在深度学习的驱动下,小目标检测已取得了重大突破,并成功应用于国防安全、智能交通和工业自动化等领域。为了进一步促进小目标检测的发展,本文对小目标检测算法进行了全面的总结,并对已有算法进行了归类、分析和比较。首先,对小目标进行了定义,并概述小目标检测所面临的挑战。然后,重点阐述从数据增强、多尺度学习、上下文学习、生成对抗学习以及无锚机制等方面来提升小目标检测性能的方法,并分析了这些方法的优缺点和关联性。之后,全面介绍小目标数据集,并在一些常用的公共数据集上对已有算法进行了性能评估。最后本文对小目标检测技术的未来发展方向进行了展望。 展开更多
关键词 小目标检测 数据增强 多尺度学习 上下文学习 生成对抗学习 无锚机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部