利用Ecopath with Ecosim在前期研究的基础上构建了3个时期(2000年秋、2006年秋、2012年秋)长江口水域生态系统的生态通道模型,分析对比了三峡工程蓄水前中后期,长江口水域生态系统结构与能量流动特征。模型将长江口水域生态系统划分为...利用Ecopath with Ecosim在前期研究的基础上构建了3个时期(2000年秋、2006年秋、2012年秋)长江口水域生态系统的生态通道模型,分析对比了三峡工程蓄水前中后期,长江口水域生态系统结构与能量流动特征。模型将长江口水域生态系统划分为鱼类、虾类、蟹类、头足类、底栖动物、浮游动物、浮游植物、碎屑等17个功能组,基本覆盖了长江口生态系统能量流动的主要途径。模型结果分析表明:蓄水前中后期,长江口水域生态系统各功能组营养级组成和分布相近,但由于长江口渔业过度捕捞,蓄水中后期多数功能组的生态营养转换率被动提高。长江口渔获物的组成未发生明显变化,但渔获物的平均营养级降低,渔获量减少。蓄水中后期,生态系统中牧食食物链的重要性增加,碎屑食物链的重要性降低,这与蓄水之后长江入海径流改变、泥沙量减少、陆源污染增加关系密切。结果表明,蓄水前中后期,生态系统均处于不成熟阶段,蓄水后生态系统总生物量、初级生产量及流向碎屑的能量呈降低趋势,但系统的净效率和再循环率升高。展开更多
根据2000年和2006年秋季长江口及毗邻水域渔业资源和生态环境调查数据,利用Ecopath with Ecosim软件,构建2个时期的长江口及毗邻水域生态能量通道模型,比较分析了三峡工程蓄水前后长江口及毗邻水域生态系统的结构和能量流动特征。模型...根据2000年和2006年秋季长江口及毗邻水域渔业资源和生态环境调查数据,利用Ecopath with Ecosim软件,构建2个时期的长江口及毗邻水域生态能量通道模型,比较分析了三峡工程蓄水前后长江口及毗邻水域生态系统的结构和能量流动特征。模型包含鱼类、虾类、蟹类、头足类、浮游动物、浮游植物、底栖动物、碎屑等17个功能群,基本覆盖了能量流动的途径。分析结果表明,2006年秋季长江口及毗邻水域生态系统的总生物量、系统总流量比2000年秋季有所下降,碎屑链的重要性略有降低;由于低营养级层次渔获物数量的增加,渔获物平均营养级有所下降。2个时期长江口及毗邻水域生态系统的再循环率较低,仍有较高的剩余生产量有待利用,均处于不成熟的发育期。展开更多
基于2018年白洋淀生态调研数据和白洋淀2010年的文献数据,将白洋淀生态系统划分为浮游藻类、底栖藻类、沉水植物、浮游动物、螺类、虾类、其他底栖动物、滤食性鱼类、草食性鱼类、杂食性鱼类、肉食性鱼类和碎屑12个功能组,采用EwE(Ecopa...基于2018年白洋淀生态调研数据和白洋淀2010年的文献数据,将白洋淀生态系统划分为浮游藻类、底栖藻类、沉水植物、浮游动物、螺类、虾类、其他底栖动物、滤食性鱼类、草食性鱼类、杂食性鱼类、肉食性鱼类和碎屑12个功能组,采用EwE(Ecopath with Ecosim)软件构建了白洋淀湖泊生态系统的物质平衡Ecopath模型,较好地模拟了白洋淀生态系统,并对比分析了2010年和2018年白洋淀生态系统结构与能量流动特征。结果表明,2010年和2018年营养结构基本一致,牧食食物链和腐食食物链是系统中的主要能流,食物网结构较简单,容易受到外界干扰的影响。与2010年相比,2018年白洋淀生态系统对初级生产者的能量利用率增加,系统能量转换效率略有增加,系统总流量提高54.64%,系统总初级生产量/呼吸量比值(TPP/TR)由9.56减少到1.51,即2018年白洋淀生态系统整体规模增大;连接指数(CI)和系统杂食指数(SOI)分别增加了14.65%和49.23%,Finn’s循环指数增加,食物链变长,功能组间影响增大,系统稳定性略微增加,处于生态发育期,且有向稳态发展的趋势。展开更多
文摘利用Ecopath with Ecosim在前期研究的基础上构建了3个时期(2000年秋、2006年秋、2012年秋)长江口水域生态系统的生态通道模型,分析对比了三峡工程蓄水前中后期,长江口水域生态系统结构与能量流动特征。模型将长江口水域生态系统划分为鱼类、虾类、蟹类、头足类、底栖动物、浮游动物、浮游植物、碎屑等17个功能组,基本覆盖了长江口生态系统能量流动的主要途径。模型结果分析表明:蓄水前中后期,长江口水域生态系统各功能组营养级组成和分布相近,但由于长江口渔业过度捕捞,蓄水中后期多数功能组的生态营养转换率被动提高。长江口渔获物的组成未发生明显变化,但渔获物的平均营养级降低,渔获量减少。蓄水中后期,生态系统中牧食食物链的重要性增加,碎屑食物链的重要性降低,这与蓄水之后长江入海径流改变、泥沙量减少、陆源污染增加关系密切。结果表明,蓄水前中后期,生态系统均处于不成熟阶段,蓄水后生态系统总生物量、初级生产量及流向碎屑的能量呈降低趋势,但系统的净效率和再循环率升高。
文摘根据2000年和2006年秋季长江口及毗邻水域渔业资源和生态环境调查数据,利用Ecopath with Ecosim软件,构建2个时期的长江口及毗邻水域生态能量通道模型,比较分析了三峡工程蓄水前后长江口及毗邻水域生态系统的结构和能量流动特征。模型包含鱼类、虾类、蟹类、头足类、浮游动物、浮游植物、底栖动物、碎屑等17个功能群,基本覆盖了能量流动的途径。分析结果表明,2006年秋季长江口及毗邻水域生态系统的总生物量、系统总流量比2000年秋季有所下降,碎屑链的重要性略有降低;由于低营养级层次渔获物数量的增加,渔获物平均营养级有所下降。2个时期长江口及毗邻水域生态系统的再循环率较低,仍有较高的剩余生产量有待利用,均处于不成熟的发育期。
文摘基于2018年白洋淀生态调研数据和白洋淀2010年的文献数据,将白洋淀生态系统划分为浮游藻类、底栖藻类、沉水植物、浮游动物、螺类、虾类、其他底栖动物、滤食性鱼类、草食性鱼类、杂食性鱼类、肉食性鱼类和碎屑12个功能组,采用EwE(Ecopath with Ecosim)软件构建了白洋淀湖泊生态系统的物质平衡Ecopath模型,较好地模拟了白洋淀生态系统,并对比分析了2010年和2018年白洋淀生态系统结构与能量流动特征。结果表明,2010年和2018年营养结构基本一致,牧食食物链和腐食食物链是系统中的主要能流,食物网结构较简单,容易受到外界干扰的影响。与2010年相比,2018年白洋淀生态系统对初级生产者的能量利用率增加,系统能量转换效率略有增加,系统总流量提高54.64%,系统总初级生产量/呼吸量比值(TPP/TR)由9.56减少到1.51,即2018年白洋淀生态系统整体规模增大;连接指数(CI)和系统杂食指数(SOI)分别增加了14.65%和49.23%,Finn’s循环指数增加,食物链变长,功能组间影响增大,系统稳定性略微增加,处于生态发育期,且有向稳态发展的趋势。