期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进锚候选框的甚高速区域卷积神经网络的端到端地铁行人检测 被引量:7
1
作者 盛智勇 揭真 +1 位作者 曲洪权 田青 《科学技术与工程》 北大核心 2018年第22期90-96,共7页
在地铁监控场景下的行人检测,具有客流量大,遮挡程度高的特点。针对该场景的行人检测,提出基于深度学习甚高速区域卷积神经网络的端到端头肩检测方案。由于甚高速区域卷积神经网络模型对目标检测具有普适性,针对通过地铁监控摄像头采集... 在地铁监控场景下的行人检测,具有客流量大,遮挡程度高的特点。针对该场景的行人检测,提出基于深度学习甚高速区域卷积神经网络的端到端头肩检测方案。由于甚高速区域卷积神经网络模型对目标检测具有普适性,针对通过地铁监控摄像头采集的真实的客流图像数据,人工标注训练及模型测试数据集进行分析;进而根据头肩特征面积分布较集中,长宽尺度比例可明显分为一类的特性对区域建议网络网络中的锚候选框进行了改进,使其更适应地铁特殊场景中的行人检测。改进后的模型在保证系统检测精度的同时提升了检测实时性,可以精确检测地铁场景下不同姿势的头肩部位;并在不同场景及视角下的检测也取得了较好的效果。 展开更多
关键词 地铁行人检测 深度学习 头肩特征 甚高速区域卷积神经网络
在线阅读 下载PDF
基于多任务Faster R-CNN车辆假牌套牌的检测方法 被引量:7
2
作者 陈朋 汤一平 +2 位作者 何霞 王辉 袁公萍 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第12期3079-3089,共11页
针对现有车辆假牌套牌各种检测方法存在计算复杂度高、检测精度低、鲁棒性欠缺等问题,提出一种基于多任务的高速区域卷积神经网络(Faster R-CNN)车辆假牌套牌的检测方法。首先利用时空约束得到疑似套牌车辆,接着用Faster R-CNN定位分割... 针对现有车辆假牌套牌各种检测方法存在计算复杂度高、检测精度低、鲁棒性欠缺等问题,提出一种基于多任务的高速区域卷积神经网络(Faster R-CNN)车辆假牌套牌的检测方法。首先利用时空约束得到疑似套牌车辆,接着用Faster R-CNN定位分割出车辆前脸部分图像,然后对疑似套牌车辆的车脸公脸部分(车辆的基本特征)的特征进行比对;在此基础上再对高仿套牌车辆的车脸私脸部分(车检标)的细微特征进行检测比对。这种分层次的、从车辆宏观特征到微观特征的视觉检测方法,具有检测速度快、鲁棒性高、泛化能力强、实施部署方便、检测精度高等优点。实验研究表明,在Vehicle ID数据集和杭州卡口数据集中分别取得了99.39%、99.22%的检测精度。 展开更多
关键词 车辆假牌套牌检测 多任务高速区域卷积神经网络 车辆脸部特征 分层特征比对
在线阅读 下载PDF
基于难负样本挖掘的改进Faster RCNN训练方法 被引量:7
3
作者 艾拓 梁亚玲 杜明辉 《计算机科学》 CSCD 北大核心 2018年第5期250-254,共5页
目标检测方法甚高速卷积神经网络(Faster Region-based Convolutional Neural Network,Faster RCNN)在训练过程中存在负样本远多于正样本的问题,即数据集不平衡问题。针对该问题,提出了一个综合定位误差和分类误差的判别函数用于判别难... 目标检测方法甚高速卷积神经网络(Faster Region-based Convolutional Neural Network,Faster RCNN)在训练过程中存在负样本远多于正样本的问题,即数据集不平衡问题。针对该问题,提出了一个综合定位误差和分类误差的判别函数用于判别难正样本,基于该函数和难负样本挖掘提出了改进的自助采样法,并提出了基于该自助采样的"五步训练法"用于训练Faster RCNN。与传统的Faster RCNN训练方法相比,五步法加强了对难样本的学习,提高了网络泛化能力,减少了误判;训练出的模型在Pascal VOC 2007数据集上测试的平均正确率均值(mean Average Precision,mAP)提高了2.4%,在FDDB(Face Detection Data Set and Benchmark)相同检出率下误检率降低了3.2%,且边框拟合度更高。 展开更多
关键词 高速区域卷积网络 目标检测 难负样本挖掘 自助采样
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部